

Weld Lobe Development and Assessment of Weldability of Common Automotive Fasteners (Studs and Nuts) using Drawn Arc Welding Process

Weld Lobe Development and Assessment of Weldability of Common Automotive Fasteners (Studs and Nuts) using Drawn Arc Welding Process

Dr. Siva Ramasamy and Richard Chinoski, Emhart Teknologies Bipin Patel, DaimlerChrysler Corporation

1.0 Introduction

Drawn arc welding (DAW) is a well established process for attaching fasteners (studs and nuts) to a variety of material type, thickness and coating combinations in automotive construction. The application of drawn arc welding is consistent with new automotive designs and manufacturing strategies that continually focus on ways to reduce costs. This is provided by a combination of short cycle time for fastener attachment (high productivity) and adaptability to automation. Technological improvements in drawn arc welding equipment have resulted in increased application of the process. However, there are concerns whether stud/nut welding can be performed on a consistent basis to the new advanced high strength materials like dual phase steel and press hardened (hot stamped boron) steels. This study was conducted to determine the feasibility of welding fasteners to galvannealed coated cold rolled mild and dual phase (DP 980) steel and aluminum silicon coated hot stamped boron steel, compare performances with the above mentioned steels, and develop weld matrices for specific stud/nut to sheet material combinations.

The principal objective was to determine the feasibility of welding various fasteners to different base materials and also develop weld lobe for the particular fastener/material combination.

2.0 Drawn Arc Welding Process

Let us examine the basic drawn arc welding sequence: As illustrated in Figure 1, the fastener, in this case illustrated as a weld stud, is held in the tool by a spring fingered device often referred to as a collet, or chuck.

The welding tool is then positioned against the work piece, completing what is commonly known as a stud on work signal. After receiving this signal the control begins a number of very precise timing functions. A pilot arc current is allowed to flow through the work piece and stud while the stud is still on the work piece. Once this current flow is established, usually in a matter of microseconds, the control turns on another power supply which energizes a linear motor, or servo motor, inside of the welding tool (commonly referred as weld head). This linear motor is mechanically linked to the fastener to be welded. As the linear motor is energized it begins pulling the stud away from the work piece. As the stud is drawn away from the work piece, the pilot arc current serves to ionize the air gap created in this sequence. The maximum distance that the fastener is drawn away from the work piece is preprogrammed, dependant on a number of variables such as; fastener design (geometry, diameter), material composition, coating, and base material thickness. Any potential contamination of the work surface must also be considered when establishing this optimum lift dimension. Once the fastener is moved to its furthest point away from the work surface, a much more robust current, often hundreds of amperes, begins to flow across the ionized gap. This high current, commonly referred to as the weld current, creates the arc which begins melting the fastener head surface and the surface of the work piece (sheet metal). After a predetermined period of arc time (weld time), dependant on some of the variables discussed earlier, the fastener is then brought back into contact with the molten surface of the work piece. The arc process is complete and the fastener is held in the proper place as the molten metal solidifies. While this drawn arc stud welding process took a minute or two, the average weld cycle time from start of welding to completion of welding averages around 100 milliseconds. During this extremely short weld cycle, the state of the art welder control is monitoring the critical elements of the cycle every 70 micro seconds and instantaneously adjusting the parameters to match a preprogrammed reference value. Using a closed loop feedback system, this parameter monitoring and adjustment virtually assures optimum fusion of the fastener to the work piece.

3.0 Equipment Specifications

Typical drawn arc welding system components are shown in Figure 2. The specification of the equipment that was used to perform welding is mentioned below.

DCE (Digitally Controlled Energy) 1500 Welder Control

Dimensions: 965mm H x 560mm W x 565mm D Mounting: Freestanding with locking wheels

User Interface: Graphical, Menu driven

Construction: Modular, Fiber Optic Communications

Thermal Rating: 130 A RMS Weight: 100kg (220 lbs)

Input Voltage: 480vac 3phase (575vac optional)
Welding Current: 100 to 1500 amperes (10A increments)

Welding Process: Short Duration Drawn Arc
Welding Time: 6 to 100ms (1ms increments)
Power Supply: High frequency switching (SMPS)
Control Interface: 32 Input 24vdc/ 32 Output Discrete
Network: DCE Link via Ethernet (optional)
Optional Int.: DeviceNet, Control Net, Profibus,

Weld Schedules: 127 per outlet maximum

Interbus-S Weld Outlets: 5 (standard)
Enclosure: NEMA 1(IP 23)

Process Control: Closed loop utilizing arc voltage, weld current and linear displacement feedback.

Built-in self compensation features including actual weld energy monitoring.

ETF Series Vibratory Stud Feeders (Dual stage hopper)

Dimensions: 1384mm H x 648mm W x 693mm D

Weight: 166kg (365 lbs)

Controls: Microprocessor / Pneumatic

Air Source: 5.5 bar (80 psi) minimum (non-lubricated)

Interface: Fiber optic via weld control
Mounting: Freestanding with leveling feet
Feed Rate: 45 studs per minute nominal

Stud Capacity: 34L (1.2 cubic ft.)

LM (Linear Motor) Weld Head

Dimensions: 350mm L x 127mm H x 90mm W (nom.)

Weight: 5.5kg (12 lbs)

Head Stroke: 50mm

Compensation: 12mm maximum

Construction: Stainless Steel / Aluminum Body Mounting: Quick mount 2 section wedge

Operation: Linear Motor / Optical Encoder Feedback

Interface: Self contained multi-cable including weld power, Pneumatics and control signals.

(feed tube separate)

4.0 Experimental Procedure

Five different types of fasteners as shown in Figure 3 and three different material types were considered for this weld testing study. The fasteners that were chosen are M6 standard (Zinc trivalent chrome coated), M6 Large Flange(LF) (Copper coated – 9 mm weld head, and Zinc coated paint cutter – 7 mm weld head), M6 stud/nut (Zinc Nickel coated), M6 nut (Zinc trivalent chrome coated). The base materials were Galvannealed coated Cold Rolled mild steel (1.1 mm thick) and Dual Phase steel (DP 980 -1.0 mm thick), and Aluminum Silicon coated Hot Stamped Boron steel (USIBOR- 1.25 mm thick). Visual Inspection (non-destructive testing) and mechanical destructive testing - bend test and tensile testing were used to evaluate the stud welded joints, and Peel test and Push-out tests were used for nut welding. No shielding gas was used for either stud or nut welding. However, air blow through the nut was used at 30 liters per minute (lpm) to prevent weld spatter on the threads. The size of the hole on the base material for the M6 nut was 8.5 mm diameter. The procedure for developing the weld lobe is shown in Figure 4.

4.1 Visual Inspection

Visual inspection was used to check for the following:

Cracked weld: A weld is considered defective if the weld stud or adjacent steel part is cracked in the weld area or adjacent to the weld area.

Holes: Welded parts shall be free of holes or burn-through. Parts that contain holes that extend through any of the welds or sheets are considered non-conforming.

Flash in the external threads: Drawn arc welded fasteners with threads shall be free of flash or spatter on the threaded sections. Fasteners that exhibit flash or spatter on the threaded section are unacceptable.

For nut welding three additional criteria's were evaluated:

Thread Distortion: The weld nut attachment is considered defective if the top of the weld nut is indented to the extent of causing distortion of the thread or of changing retaining torque characteristics weld nuts, screws or bolts.

Flash in Internal Threads: The weld nut attachment is defective if the weld flash in the threads causes excessive variations in the assembly driving torque values. In addition, the weld nut attachment is considered defective if the weld flash interferes with the application of bolt into the nut.

Alignment: The weld nut attachment is defective if the thread major diameter is in interference with the clearance hole in the adjacent part it is welded.

4.2 Bend Test for Stud Welding (Simulated Manual Fatigue Test)

Secure the welded sample in the appropriate fixture. See Figure 5. Place appropriate size tube over stud. Tube should be 18-24 inches in length and the inside diameter should be 5% greater than the major thread diameter of the stud. Apply simulated bending fatigue motion to the stud through a 120° arc until the stud separates completely from the base material, or the stud itself breaks. When the stud is removed from its base material by an oscillating side-to-side motion, a button will be formed on the head of the stud. The button is that part of the weld, including all or part of the weld nugget that tears out in a bend test. See Figure 6. The average button diameter is calculated by adding the measurement of the major axis to the measurement of the axis perpendicular to the first axis and dividing by 2. The weld matrix was summarized using acceptance criteria of >70% of the fused area as shown in Table 1.

Table 1. Summary of Acceptance Criteria

W eld Nugget Size										
	6	Stud Broke								
Preferred	5	100% - 91 %								
	4	90 % - 81 %								
A c c e p t a b l e	3	80 % - 71 %								
Unacceptable	2	70 % - 61 %								
Onacceptable	1	60% - 0%								
Head Me	Ited Off									
(Im portar	(Im portant when									
M W eld Siz	e = 6									

4.3 Tensile (Pull) Test for Stud Welding

Secure the welded sample in the appropriate fixture that has a clearance hole exactly 3.0 mm larger in diameter than the stud head diameter. See Figure 7. Close jaws over stud. Apply ultimate tensile pull load normal to the plain of attachment at a rate of 2.0 inches/min. until the stud separates completely from the base material.

4.4 Peel Test for Nut Welding

The nut is either pulled or peeled from the base metal. To pass this test, the following criteria must be met: Interface fracture with weld fusion equal to or greater than 70% of the circumference face area of the welded nut (For drawn arc nut welding it is a hollow cylindrical cross-section). See Figure 8.

Weld fusion will be indicated by evidence of severe strain, distortion or partial tearing of the base metal. The fracture may be tensile-granular crystalline appearance or shear-clear wiped metallic somewhat grainy appearance.

4.5 Push-Out Test (Tensile Test)

Secure the welded sample in the appropriate fixture. See Figure 9. The hole in the back-up block should be approximately 10% larger than the outside diameter of the nut being tested. Seat properly push-out pin into the hole in the weld nut. Apply ultimate tensile push-out load normal to the plain of attachment at a rate of 2.0 in/min. Apply load until the nut separates completely from the base material. The weld matrix was summarized using acceptance criteria of >70% of the fused area as shown in Table 1.

5.0 Results and Discussion

5.1 Weld Lobe Development using Bend Test

All the fasteners were welded to the given base material with stud negative polarity. The weld current vs. weld time matrix for all the studs and the nut are shown in Tables 2 thru 16. The results of these tests clearly illustrate two very important characteristics of the drawn arc stud/nut welding to different sheet materials.

First, it is evident that the drawn arc welding process exhibits a fairly wide flexibility in welding current and weld time combinations that result in the production of satisfactory welds. These test results illustrate the fact that drawn arc welding quality is determined primarily by the proper coordination of welding current and weld time.

The second important characteristic is that the cutoff relationship between welding energy input and the weld integrity is difficult to precisely define. This is because there is a broad range of welding current and welding time at which quality welds were obtained, and within this broad range there are settings at which weld quality is consistent.

Two important observations were noticed on Hot Stamped Boron material. First, M6 nut welding on HSB, the fracture acceptance criteria was 1 under bend test, which is unacceptable. This is because shear strength of the Hot Stamped Boron steel is much higher than the strength of the weld. This leads to fracture pulling the top surface of the base material. See Figure 10. Second, the M6 LF stud with higher standoff (Figure 3-C) welded with consistency to the HSB. The molten metal produced during the welding is displaced during the plunge part of the welding process. Comparatively, during welding of M6 LF stud with 1mm stand off (Figure 3-B), the molten metal is trapped under the flange portion of the stud preventing the stud from achieving full penetration depth. This results in porosities leading to inconsistent welds. See Figure 11.

For a given fastener/base material combination, the recommended weld schedule (Table 17) is the blue highlighted point of the nine box window (150 Amps x 15 ms) (Tables 2 - 16) that was developed during the weld lobe development. See Figure 4.

Table 17 Summary of recommended weld schedule for a given fastener/base material

S.No.	Base metal type and	Fastener type	Lift height	Recommended
	thickness (mm)		(mm)	weld schedule
1	CRS - 1.1	M6 Nut	0.8	1350 A, 55 ms
2	DP Steel - 1.0	M6 Nut	0.8	1350 A, 55 ms
3	HSB Steel - 1.25	M6 Nut	0.8	1350 A, 55 ms
4	CRS - 1.1	M6 Stud/Nut	1.2	1200 A, 40 ms
5	DP Steel - 1.0	M6 Stud/Nut	1.2	1200 A, 40 ms
6	HSB Steel - 1.25	M6 Stud/Nut	1.2	1200 A, 40 ms
7	CRS - 1.1	M6 Cu LF	1.2	1350 A, 45 ms
8	DP Steel - 1.0	M6 Cu LF	1.2	1350 A, 45 ms
9	HSB Steel - 1.25	M6 Cu LF	1.2	1450 A, 40 ms
10	CRS - 1.1	M6 Std	1.2	900 A, 30 ms
11	DP Steel - 1.0	M6 Std	1.2	900 A, 30 ms
12	HSB Steel - 1.25	M6 Std	1.2	900 A, 30 ms
13	CRS - 1.1	M6 Zn LF	1.2	1050 A, 40 ms
14	DP Steel - 1.0	M6 Zn LF	1.2	1050 A, 40 ms
15	HSB Steel - 1.25	M6 Zn LF	1.2	1050 A, 40 ms

5.2 Mechanical Properties of the Welds

The mechanical properties of the fasteners were evaluated in terms of tension test (or pull test) is summarized in Table 18. The sample size for the tensile test was around 50. The recommended weld schedule for a given fastener/base material combination are shown in appropriate tables.

Table 18 Summary of the Mechanical Properties for Different Fastener/Base Material

S.No.	Base metal	Base metal	Fastener	Average Pull	Fracture
	type	thickness (mm)	Туре	Strength (lbs)	Mode
1	CRS	1.1	M6 Nut	2655	Base metal
2	DP Steel	1.0	M6 Nut	3014	Base metal
3	HSB Steel	1.25	M6 Nut	2120	Weld
4	CRS	1.1	M6 Stud/Nut	1494	Base metal
5	DP Steel	1.0	M6 Stud/Nut	1809	Base metal
6	HSB Steel	1.25	M6 Stud/Nut	2007	Base metal
7	CRS	1.1	M6 Cu LF	1839	Base metal
8	DP Steel	1.0	M6 Cu LF	1951	Base metal
9	HSB Steel	1.25	M6 Cu LF	2373	Base metal
10	CRS	1.1	M6 Std	1449	Base metal
11	DP Steel	1.0	M6 Std	2022	Base metal
12	HSB Steel	1.25	M6 Std	2158	Base metal
13	CRS	1.1	M6 Zn LF	1478	Base metal
14	DP Steel	1.0	M6 Zn LF	1961	Base metal
15	HSB Steel	1.25	M6 Zn LF	1916	Base metal

6.0 Conclusions/Summary

Based on the results obtained from this study, the following conclusions can be drawn:

- The fasteners chosen for this study can be welded to the galvannealed coated cold rolled mild and dual phase (DP 980) steels and aluminum silicon coated hot stamped boron steel.
- Large Flange stud with higher standoff is the recommended stud for welding to hot stamped boron material.
- The fracture mode for the M6 nut welding on hot stamped boron was a partial sheet metal fracture surface.

7.0 Acknowledgement

The authors would like to acknowledge the technical support of Metal & Machine-Shop of DaimlerChrysler, and they are thankful for the financial support provided by the Auto/Steel Partnership Material Joining Technologies Committee. For more information: www.a-sp.org.

Figure 1. Drawn Arc Stud Welding Sequence

The stud is fed into a collet in a weld head or weld gun and the unit is cycled forward until the stud touches the base material generating a STUD ON WORK signal.

The stud lifts a programmable distance from the work surface and a pilot arc is generated. The pilot arc ionizes the air gap between the bottom of the stud and the work surface.

At some predetermined time the main welding current is turned on. The welding current generates molten material at the bottom of the stud and at the surface of the base material. The weld head then cycles forward plunging the stud into the molten puddle of material. The molten puddle solidifies and the weld head cycles back leaving the welded stud in place.

45 - 100ms

(Depends Upon Stud Configuration & Sheet Metal Thickness)

Figure 2. Stud welding system components

Figure 3. Types of fasteners used

Figure 4. Weld Lobe Development Procedure

Figure 5. Bend Test (Simulated manual fatigue test)

Figure 6. Weld nugget from drawn arc stud welding during Bend test

Figure 7. Tensile (Pull) test

Figure 8. Measurement of Fused Area in a Drawn Arc Weld Nut

Ideal Weldable Area

Typical Weldable Area

Figure 9. Push-out (tensile test) destructive test for nut welding

Figure 10. M6 nut welding failure mode with HSB Steel

Figure 11. M6 Large Flange Stud Welded to HSB Steel

M6 Large Stud with higher stand-off

M6 Large Stud with standard stand-off

Table 2

FASTEMER DESCRIPTION: FASTEMER PLATING: EMHART FASTEMER PART#: BASE MATERIAL PLATING: BASE MATERIAL PLATING: BASE MATERIAL THICKNESS:

M6 NUT Zinc trivalent chrome

Mild Steel Galvanneal 1.1 mm

1 1 5 5 5 1 1 1 3 6 1 1 1 3 5 1 1 1 1 3 5 1 1 1 1 1 1 1 1 1
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5 1 1 1 3 5
1 1 1 3 5
1 1 5 5 5
1 1 4 5 5
1 1 4 5 5
1 3 5 5 5

EQUIPMENT DCE 1500 WELD CONTROL ETF 12 FEEDER LM WELD HEAD

WELD PROGRAMMING PARAMETERS LIFT 0.80mm PENETRATION -1.8 mm START DELAY 250ms Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD TIME +/- 30Amps STUD NEGATIVE POLARITY AIR BLOW 30 ipm

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke	Preferred	- 6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	
Overmelting of St	tud or Base Material	M

RECOMMENDED WELD SCHEDULE: 1350A 55ms

TENSILE TEST at
RECOMMENDED
WELD SCHEDULE

#	DATA	*	#	DATA		#	DATA		#	DATA	*	#	DATA	*	Statistical Evaluation	
- 1	2863	В	- 11	2752	В	21	2834	В	31	2797	В	41	2703	В	Average (X)	2655.2
2	2891	В	12	2572	В	22	2827	В	32	2709	В	42	2730	В	Std. Dev. (a)	183.5
3	2776	В	13	2756	В	23	2670	В	33	2432	В	43	2569	В	X-38:	2104.6
4	2549	В	14	2863	В	24	2713	В	34	2726	В	44	2345	В	Minimum	2250
5	2478	В	15	2783	В	25	2507	В	35	2730	В	45	2250	В	Maximum	3015
6	2605	В	16	2546	В	26	2801	В	36	2570	В	46	2872	В	Range	765
7	2643	В	17	2744	В	27	2443	В	37	2753	В	47	2518	В	* Frac	cture Mode
8	2544	В	18	2662	В	28	2938	В	38	2275	В	48	2612	В	Nut	0 pcs.
9	2596	В	19	2643	В	29	2326	В	39	3008	В	49	2682	В	<u>B</u> 889	50 pcs.
10	2707	В	20	2705	В	30	3015	В	40	2438	В	50	2290	В	Weld	0 pcs.

FASTEMER DESCRIPTION:
FASTEMER PLATING:
EMHART FASTEMER PART#:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL PLATING:

M6 NUT Zinc trivalent chrome

DP980 Galvanneal 1.0 mm

		_	_	_			-		-
1500									
1450									Ž.
1400				- 1	1	5	5	5	10
1350				1	1	4	15	5	5
1300				1	1	- 1	5	5	5
1350 1300 1250				1	1	1	5	5	5
				1	- 1	- 1	1	3	- 5
1150				1	1	1	1	5	5
1100				1	1	- 1	1	1	5
1150 1100 1050							į.		1
950 900	0 0				8 8			8	ě.
900									
850	0 0				3		2	(6)	ě.
800									
750	8				3		2		Č.
700									
650	î î		7				1	7	1
600	3		9		8		3	0	
550									
500	Same 1	200000	Same 3		J		3 1,000	0	
	20	25	30	35	40	45	50	55	60
	8 8			WELD T	IME (t) in	millised	onds		3

LM WELD HEAD WELD PROGRAMMING

PARAMETERS LIFT 0.80mm

EQUIPMENT DCE 1500 WELD CONTROL ETF12 FEEDER

PENETRATION -1.8 mm START DELAY 250ms Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD CURRENT +/- 30Amps

STUD NEGATIVE POLARITY AIR BLOW 30lpm

Acceptance Criteria

Stud Broke 100%-91% Preferred Unacceptable

1350A 55ms RECOMMENDED WELD SCHEDULE:

DATA * # DATA * Statistical Evaluation 31 32 33 34 35 ENSILE TEST at 2945 B 3455 B 3110 B B 41 3554 B Average (X)
B 42 3015 B Std. Dev. (s)
B 43 2868 B X-3s: RECOMMENDED 44 45 Minimum 3197 3212 B 3211 B Maximum 2848 2773 16 2898 B 2973 B 46 47 Range * Fracture Mode
Nut 0 pc 2521 3459 2945 B 48 49 20 2714 B Weld

Table 4

FASTENER DESCRIPTION: FASTENER PLATING: EMHART FASTENER PART#: BASE MATERIAL TYPE: BASE MATERIAL PLATING: BASE MATERIAL PLATING:

M6 NUT Zinc trivalent chrome

USIBOR HSB AISI 1.25 mm

	1500									
	1450		- 3		- burnet	arraner e i		NAME OF STREET	and the same	Same
8	1400				5	5	5	5	5	5
Ē	1350				5	5	5	5	5	5
(I) in Amps	1300				5	5	5	5	5	5
Ξ	1250		-		5	5	5	5	5	5
	1200				5	5	5	5	5	5
N	1150		- 1		5	5	5	5	5	5
CURRENT	1100				5	4	5	5	5	5
5	1050								10 10 10 10	
0	1000									
WELD	950	3			10 0			8 8	-	
3	900									
	850							8		
	800									
	750	3								
	700									
	650								1	
	600	3			10 3					
	550									
	500	2	1000	20.00	I was		No.		1500	i ma
	70.00	20	25	30	35	40	45	50	55	60
		(C) (C)			WELD T	IME (t) in	millised	onds		

EQUIPMENT DCE 1500 WELD CO

DCE 1500 WELD CONTROL ETF12 FEEDER

LM WELD HEAD

WELD PROGRAMMING

PARAMETERS	
LIFT	0.80mm
PENETRATION	-1.8 mm
START DELAY	
Varc PILOT LIMIT	
Varc WELD LIMIT	15.0V to 33.0V
WELD TIME	+/- 6ms
WELD CURRENT	+/- 30Amps
STUD NEGATIVE	POLARITY
AIR BLOW	30lpm

Acceptance Criteria

Stud Broke	Preferred	6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	1
Overmetting of S	tud or Base Material	M
1115111	Different Mode	

RECOMMENDED WELD SCHEDULE: 1350A, 55ms

	#	DATA	*	#	DATA	*	#	DATA	*	#	DATA	*	#	DATA	*	Statistical Eva	luation
TENSILE TEST at	1	1850	В	11	1919	В	21	2365	В	31	1863	В	41	1799	В	Average (X)	2120.6
RECOMMENDED	2	1395	В	12	2185	В	22	2170	В	32	2067	В	42	2542	В	Std. Dev. (8)	382.0
WELD SCHEDULE	3	1786	В	13	2180	В	23	2024	В	33	1875	В	43	2256	В	X-38:	974.8
0	4	2314	В	14	2260	8	24	2439	В	34	1928	В	44	1788	В	Minimum	1395
	5	2703	В	15	1812	В	25	1917	В	35	2309	В	45	2234	В	Maximum	3055
	6	1717	В	16	2021	В	26	1777	В	36	1723	В	46	2181	В	Range	1660
	7	2356	В	17	2746	В	27	2081	В	37	2569	В	47	1621	В	* Fra	oture Mode
	8	1858	В	18	2768	В	28	2365	В	38	2180	В	48	3055	В	<u>N</u> ut	0 pcs.
	9	2727	В	19	1862	В	29	2579	В	39	1551	В	49	1530		_Base	48 pcs.
	10	27.42	В	20	2279	8	30	1825	R	40	1511	В	50	2427		Wold	0.000

Table 5

FASTENER DESCRIPTION: FASTENER PLATING: EMHART FASTENER PART#: BASE MATERIAL TYPE: BASE MATERIAL PLATING: BASE MATERIAL PLATING:

M6 Stud/Nut Zinc-Nickel 39050 Mild Steel Galvanneal 1.1 mm

				200	200					
	1500									
	1450									
12	1400									
Ē	1350									
A	1300									
(I) in Amps	1250	1		. 5	- 5	5	5	}	8 8	
	1200			5	5	5	5			
CURRENT	1150	9		5	5	5	5	į		
器	1100			4	5	5	5	5		
5	1050	2 2		3	4	5	5	5		
	1000	J. J		3	5	5	5	5		
WELD	950			3	4	4	1.	5	T T	
3	900	3 3		2	4	4	4	5		
	850			2	2	3	4	5	Ĭ	
	800			2	1	1	5	5		
	750			2	2	2	1.	3		
	700	3 3		1	1	1	1	1		
	650								i i	
	600									
	550									
	500									
		20	25	30	35	40	45	50	55	60
				2.0	MELDIT	IDST (4) :		Company of the Compan	100	

WELD PROGRAMMING

EQUIPMENT DCE 1500 WELD CONTROL ETF12 FEEDER LM WELD HEAD

PARAMETERS

LIFT 1.20mm PENETRATION -1.8 mm START DELAY 250ms

Varc PILOT LIMIT 15.0V to 33.0V
Varc WELD LIMIT 15.0V to 33.0V
WELD TIME +/- 6ms
WELD CURRENT +/- 30Amps
STUD NEGATIVE POLARITY

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke	Preferred	6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	1
Overmelting of	Stud or Base Material	M

RECOMMENDED WELD SCHEDULE:

1200A 40ms

- E	#	DATA	*	#	DATA	*	#	DATA		#	DATA	*	#	DATA	*	Statistical Eva	iluation
TENSILE TEST at	- 1	1691	В	11	1449	В	21	1198	В	31	1443	В	41	1571	В	Average (X)	1494.4
RECOMMENDED	2	1565	В	12	1269	В	22	1401	В	32	1482	В	42	1543	В	Std. Dev. (8)	121.7
WELD SCHEDULE	3	1477	В	13	1634	В	23	1192	В	33	1322	В	43	1393	В	X-38:	1129.4
Contraction of the second	4	1374	В	14	1572	В	24	1381	В	34	1521	В	44	1497	В	Minimum	1192
	5	1365	В	15	1552	В	25	1695	В	35	1548	В	45	1449	В	Maximum	1695
	- 6	1560	В	16	1573	В	26	1336	В	36	1628	В	46	1424	В	Range	503
	7	1526	В	17	1624	В	27	1361	В	37	1551	В.	47	1357	В	* Frac	sture Mode
	- 8	1468	В	18	1630	В	28	1674	В	38	1548	В	48	1605	В	Stud	0 pca.
	9	1616	В	19	1537	В	29	1601	В	39	1436	В	49	1529	В	<u>B</u> ase	50 pcs.
	10	1464	·B	20	1537	B	30	1334	R	40	1634	В	50	1581	B	Weld	0 pcs

Table 6

FASTENER DESCRIPTION:
FASTENER PLATING:
EMHART FASTENER PART#:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL PLATING:

M6 Stud/Nut Zinc-Nickei 39050 DP980 Gaivanneai 1.0 mm

100	4500									
	1500									
	1450					2 2				
18	1400									
E	1350									
WELD CURRENT (I) in Amps	1300									
Ξ	1250			5	5	5	5			
T	1200			5	5	5	5			
Z	1150			5	4	5	5	į.		
2	1100			2	5	5	5	- 5		
5	1050			5	5	5	4	- 5		
00	1000			1	5	5	5	- 5		
=	950	0		2	5	5	- 4	- 5	6	
3	900			3	1	5	3	5		
247	850	1		2	- 1	1	4	- 5		
	800			1	- 1	- 1	2	1		
	750	1		1	- 1	1	- 1	- 5		
	700			1	- 1	- 4	1	4		
	650	î î						1		
	600	3 3		9 3		0 8			8 ×	
	550			T T		T T			T T	
	500	Sec. 1		Maria S		0	200		January 1	
100		20	25	30	35	40	45	50	55	60
		8 9		9	WELD T	IME (t) in	millise	conds	99	

DCE 1500 WELD CONTROL ETF12 FEEDER LM WELD HEAD

EQUIPMENT

WELD PROGRAMMING PARAMETERS

LIFT 1.20mm

PENETRATION -1.8 mm

START DELAY 250ms

Vare PILOT LIMIT 15.0V to 33.0V

Vare WELD LIMIT 15.0V to 33.0V

WELD TIME +/- 6ms

WELD CURRENT +/- 30Amps

STUD NEGATIVE POLARITY

Acceptance Criteria

Stud Broke	Preferred	- 6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	
Overmeting of S	hud or Base Material	M

RECOMMENDED WELD SCHEDULE: 1200A 40ms

DATA * Statistical Evaluation 1865 B 1934 B TENSILE TEST at 2025 B 41 1450 B 42 Average (X) 22 23 24 1872 1648 1976 B Std. Dev. (8) 1524 1604 B 43 1573 13 33 1987 B X-38: 1241. 1732 B 1834 34 1969 B 44 Minimum 2032 14 15 35 36 37 Maximum 1831 B 1336 B 1925 B 1852 B 46 47 1637 Range 1749 17 1842 1483 18 19 20 48 49 50 Stud 1663 E Weld

FASTENER DESCRIPTION:
FASTENER PLATING:
EMHART FASTENER PARTIE:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL THICKNESS:

M6 Stud/Nut Zinc -Nickel 39050 USIBOR HSB AISI 1.25 mm

	20	25	30	35	40	45	50	55	60
500	1		Sec. 3				1000	2	
550									
600	13		2		2 2			2	Q.
650									
700			1	- 1	1	1	3		
750			1	1	1	5	5	8	
800			1	- 1	1	4	5		
850	(1)		1	1	1	5	5	8	
900			1	4	5	5	5		
950			1	4	5	4	5		
1000			3	5	5	4	- 5		
1050			3	4	5	4	5		
1100			5	5	5	5	5		
1150			5	5	5	5	j 55		,
1200			4	- 5	5	5			
1250			5	5	5	5			
1300									
1350									
1400									
1450							1		
1500									

EQUIPMENT

DCE 1500 WELD CONTROL ETF12 FEEDER LM WELD HEAD

WELD PROGRAMMING PARAMETERS

LIFT 1.20mm PENETRATION -1.8 mm START DELAY 250ms Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke	Preferred	- 6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	
Overmetting of S	tud or Base Material	M

RECOMMENDED WELD SCHEDULE:

1200A 40ms

100	#	DATA			DATA		#	DATA		#	DATA		#	DATA		Statistical Eval	uation	
ENSILE TEST at	- 1	2255	В	- 11	2188	В	21	2313	В	31	1813	В	41	1808	В	Average (X)	2007.56	
ECOMMENDED	2	1870	В	12	2099	В	22	2274	В	32	1916	В	42	1878	В	Std. Dev. (a)	181.3	
VELD SCHEDULE	3	1949	В	13	1911	В	23	2027	В	33	1812	В	43	1805	В	X-38:	1463.6	
	4	2125	В	14	2393	В	24	2102	В	34	1651	В	44	1708	В	Minimum	1584	
	5	2172	В	15	2129	В	25	2251	В	35	1784	В	45	1970	В	Maximum	2393	
	6	2223	В	16	2179	В	26	2058	В	36	1815	В	46	2008	В	Range	809	
8	7	2043	В	17	1989	В	27	2089	В	37	2082	В	47	2023	В	* Frac	ture Mode	
	8	2142	В	18	2223	В	28	2207	В	38	1584	В	48	1865	В	Stud	0 pcs.	
	9	1879	В	19	2211	В	29	1995	В	39	1824	В	49	1900	В	Base	50 pcs.	
	10	2082	В	20	2035	В	30	1989	В	40	1812	В	50	1918	В	Weld	0 pcs.	

FASTENER DESCRIPTION: FASTENER PLATING: EMHART FASTENER PART#: BASE MATERIAL PLATING: BASE MATERIAL PLATING: BASE MATERIAL THICKNESS:

MG Large Flange (9 mm head) CLASS 8.8 Copper 29853 MILD STEEL Galvanneal 1.1 mm

	1500									
	1450				5	5	5	5M	5M	
8	1400				5	5	5	5	5M	
Amps	1350				5	5	5	5	5M	
٤	1300				5	5	5	5	5M	
(E)	1250				4	4	4	5	5	- 5
	1200				4	4	4	5	5	4
교[1150				2	2	4	4	5	4
쯢[1100				1	2	4	4	4	5
CURRENT	1050				2	1	3	3	з	4
	1000				2	2	2	1	3	2
WELD	950	3			1	2	2	2	2	- 4
≶	900				1	1	া	1	1.	
	850	3								
	800									
	750	3								Š.
	700									
	650	7								
	600	9			3					ĝ.
	550									1
	500	1	- respec	- ANDRE	10	V2000	Name of the last			å
100		20	25	30	35	40	45	50	55	60
		(C) (C)		3	WELD T	IME (t) in	millised	onds		

EQUIPMENT

DCE 1500 WELD CONTROL ETF12 FEEDER LM WELD HEAD

WELD PROGRAMMING

PARAMETERS LIFT PENETRATION -1.8 mm START DELAY 250ms

Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V

WELD TIME +/- 6ms WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

Accentance Criteria

noceptanice	Citteria	
Stud Broke	Preferred	6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	¥.
Overmeting of a	Stud or Base Material	M

RECOMMENDED WELD SCHEDULE: 1350A 45ms

	#	DATA		#	DATA	*	#	DATA	*	#	DATA		#	DATA	*	Statistical Eva	luation
TENSILE TEST at	1	1883	В	11	1845	В	21	1506	8	31	2156	В	41	1675	В	Average (X)	1839
RECOMMENDED	2	2102	В	12	2122	В	22	1858	В	32	1884	В	42	1301	В	Std. Dev. (8)	
WELD SCHEDULE	3	1652	В	13	1732	В	23	1773	В	33	1859	В	43	1899	В	X-38:	1330.2
	4	1708	В	14	1778	В	24	1837	В	34	1886	В	44	1780	В	Minimum	1301
	5	1956	В	15	1819	В	25	1907	8	35	1855	В	45	1900	B	Maximum	2156
	6	1991	В	16	1857	В	26	1774	В	36	1940	В	46	1794	ø	Range	855
	7	1730	В	17	2058	В	27	1659	В	37	1874	В	47	1867	В	* Frac	oture Mode
	8	2044	В	18	1897	В	28	1970	В	38	1811	В	48	1659	В	<u>s</u> tud	0 pcs.
	9	1845	В	19	1822	В	29	1364	8	39	1765	В	49	1807	В	<u>B</u> ase	50 pcs.
	40	0400		0.0	47.40		0.0	00.40		40	4000			4700	1	381-1-1	

FASTEMER DESCRIPTION:
FASTEMER PLATING:
EMHART FASTEMER PARTIE:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL PLATING:

M6 Large Flange (9 mm head) CLASS 8.8 Copper 29853 DP980

Galvanneal

	20	25	30	35	40 ME (4) in	45	50	55	60
500	20	25	20	25	40	45	50	55	CC
550									
600							0	9 1	8
650									
700									
750					0 0			0.00	9
800									
850									2 0
				-1	1	1	- 1	1	- 1
950				- 1	1	2	1	1	- 1
				1	1	1	1	1	
1050				- 1	1	1	1	1	3
1100				1	2	3	3	3	3
1150 1100 1050				2	1 1	3	- 4	5	5
				2	2	4	4	4	5
1250				- 4	5	4	5	5M	
1300				5	4	4	5	6M	
1400 1350				4	5	5	5	5M	
1400				4	5	5	5	6M	
1450				5	- 6	5	5M	5M	
1500									

EQUIPMENT

DCE 1500 WELD CONTROL

ETF12 FEEDER

LM WELD HEAD

WELD PROGRAMMING

PARAMETERS

LIFT

PENETRATION -1.8 mm START DELAY 250m6

Varc PILOT LIMIT 15.0V to 33.0V

Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms

WELD CURRENT +/- 30Amps

STUD NEGATIVE POLARITY

WELD TIME (t) in milliseconds

Acceptance Criteria

100%-91% Preferred Unacceptable Unacceptable

RECOMMENDED WELD SCHEDULE: 1350A 45ms

DATA * Statistical Evaluation TENSILE TEST at Average (X) RECOMMENDED WELD SCHEDULE 32 2137 1894 B 42 2423 B Std. Dev. (8) 1900 43 2016 B 44 1938 B 2450 24 34 Minimum 1565 B 1993 14 2114 B 148 2255 1904 B 1530 B 35 1933 B 45 2246 15 Maximum 16 17 46 47 1728 Range 1838 B 1915 B 1581 B 2090 B 1821 B 1814 B 1895 1664 2183 48 1640 49 1654 18 1938 2052 stud 19 50 pcs Base blew

Emhart Teknologies Table 10

FASTENER DESCRIPTION:
FASTENER PLATING:
EMHART FASTENER PART#:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL THICKNESS:

M6 Large Flange (9 mm head) CLASS 8.8 Copper 29853 USIBOR HSB AISI 1.25 mm

Γ	1500			5	- 6	6	6M			
- 1	1450			1	6	6	6	6M		
8	1400			1	3	- 6	5	1M		
Amps	1350				1	- 6	4	6M	1M	
A	1300				- 6	1	3	1M	1M	
(E)	1250				1	1	6	- 6	- 6M	6M
	1200				6	6	6	1	1	6
급[1150				- 6	1	- 6	1	1	6
쭚[1100				1	6	6	6	1	6
CURRENT	1050				1	6	1	1	1	6
	1000				1	6	1	1	1	6
WELD	950	9			1	1	1	1 1	6	6
3	900				- 1	1	1	- 1	1	6
	850	2 8						(- W		
	800									
[750	2 8								
	700									_
	650			m n		Ÿ Ÿ				
	600	3		9						ģ.
	550			m m						
	500	V	200000	Same 3	0.000			3 1000	Same 1	l near
100		20	25	30	35	40	45	50	55	60
		100	9	333	WELDT	ME (t) in	million	nonde	350	3

EQUIPMENT

DCE 1500 WELD CONTROL ETF12 FEEDER

LM WELD HEAD

WELD PROGRAMMING

PARAMETERS

LIFT 1.20mm
PENETRATION -1.8 mm
START DELAY 250ms

Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms

WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke	Preferred	- 6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	1
Charman and C	had on Spen Material	4.4

verneting of but of base Material M

RECOMMENDED WELD SCHEDULE: 1450 A, 40 ms

and the second s	#	DATA	*	#	DATA	*	#	DATA	*	#	DATA	*	#	DATA		Statistical Eva	luation
TENSILE TEST at	- 1	2579	В	- 11	2370	В	21	2741	В	31	2085	В	41	2713	В	Average (X)	2373.12
RECOMMENDED	2	2647	В	12	2404	В	22	1815	В	32	2689	В	42	2923	В	Std. Dev. (8)	335.9
WELD SCHEDULE	3	3020	В	13	2278	В	23	2126	В	33	1667	В	43	1991	В	X-38:	1365.5
	4	2268	В	14	2455	В	24	2235	В	34	2671	В	44	1788	В	Minimum	1569
	5	2486	В	15	2411	В	25	2553	В	35	2264	В	45	2090	В	Maximum	3020
	6	2285	В	16	2630	В	26	2350	В	36	1569	В	46	2134	В	Range	1451
	7	2854	B	17	2746	В	27	2611	В	37	1888	В	47	2176	В	* Frac	ture Mode
	8	2616	В	18	2044	В	28	2581	В	38	2336	В	48	1965	В	Stud	0 pcs.
	9	2317	В	19	2392	В	29	2749	В	39	2776	В	49	2213	В	<u>B</u> ase	50 pcs.
	10	2517	8	20	2446	R	30	2785	R	40	2502	R	50	1905	R	Wold.	0 nce

Table 11

FASTENER DESCRIPTION: FASTENER PLATING: EMHART FASTENER PART#: BASE MATERIAL PLATING: BASE MATERIAL PLATING: BASE MATERIAL PLATING:

MS Standard Flange Stud Zinc trivalent chrome 39026 Mild Steel Galvanneal 1.1 mm

1	4500									
	1500									
	1450	3		9						
8	1400									
E	1350							8		
A	1300								II.	
(I) in Amps	1250	9 9				3			8	
F	1200									
E N	1150	9 (
쭚	1100				2004					
CURRENT	1050	5	5	5	5M					
0	1000	5	5	5	5M				to.	
WELD	950	5	5	5	5					
3	900	5	5	5	5					
-	850	5	5	5	5			1		
	800	2	5	5	5			9		
	750	1	4	5	5					1
	700	1	3	5	5				8	
	650	4	1	4	5					1
	600	1	- 1	2	5			8		
	550									
- 0	500							5		
100		20	25	30	35	40	45	50	55	60
		200		31 M	WEIDT	IME (t) in	millise	conds	135	

LIFT 1.20mm

PENETRATION -1.8 mm

START DELAY 250ms

Vare PILOT LIMIT 15.0V to 33.0V

Vare WELD LIMIT 15.0V to 33.0V

WELD TIME +/- 6ms

WELD CURRENT +/- 30Amps

STUD NEGATIVE POLARITY

WELD PROGRAMMING PARAMETERS

EQUIPMENT
DOE 1500 WELD CONTROL
ETF12 FEEDER
LM WELD HEAD

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke	Preferred	6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	1
Overmation of S	had on Base Material	3.6

RECOMMENDED WELD SCHEDULE:

and the second	#	DATA		#	DATA		#	DATA	*	#	DATA	*	#	DATA	*	Statistical Eva	luation
TEST at	-1	1487	В	- 11	1452	В	21	1497	В	31	1465	В	41	1533	В	Average (X)	1449.36
MENDED	2	1433	В	12	1354	В	22	1515	В	32	1417	В	42	1353	В	Std. Dev. (8)	50.1
CHEDULE	3	1484	В	13	1401	В	23	1442	В	33	1467	В	43	1447	В	X-38:	1298.9
	4	145€	В	14	1434	В	24	1436	В	34	1397	В	44	1378	В	Minimum	1338
	5	1509	В	15	1430	В	25	1372	В	35	1482	В	45	1412	В	Maximum	1588
	6	1382	В	16	1466	В	26	1509	В	36	1437	В	46	1454	В	Range	250
	7	1461	В	17	1510	В	27	1429	В	37	1464	В	47	1430	В	* Frac	ture Mode
	8	1338	В	18	1462	В	28	1507	В	38	1414	В	48	1442	В	Stud	0 pcs.
	9	1444	В	19	1588	В	29	1474	В	39	1495	В	49	1513	В	<u>B</u> ase	50 pcs.
	10	1483	8	20	1.421	R	30	1448	R	40	1405	R	50	1379	R	Mald	0 nes

900A 30ms

FASTEMER DESCRIPTION:
FASTEMER PLATING:
EMHART FASTEMER PART#:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL PLATING:

M6 Standard Flange Stud Zinc trivalent chrome 39026 DP980 Galvanneal 1.0 mm

4.450									
1450									
						-			
			2 9			8			
			0.00			0			
	J								
	- 6	6	6	6M		8			
Total Control of the	- 6	6	- 6	6M	d.			V	
950	6	- 6	6	6					
900	6	6	6	- 6	<u>}</u>	2			
850	2	6	- 6	- 6					
800	1	6	- 6	- 6	<u> </u>	9		10	
750	1	6	- 6	- 6	"			ľ.	
700	2	2	- 6	- 6		9			
650	- 1	3	- 6	- 6				l'i	
600	1	2	4	5					
550									
500									
	20	25	30	35	40	45	50	55	60
	850 800 750 700 650 600 550	1350 1300 1250 1200 1150 1100 1050 6 950 6 900 6 850 2 800 1 750 1 700 2 650 1 550 500	1350 1300 1250 1200 1150 1100 1100 1050 6 6 950 6 6 990 6 850 2 6 800 1 6 750 1 6 700 2 2 6 6 700 2 2 6 6 700 2 2 6 700 1 6 700 1 6 700 1 6 700 1 6 700 1 6 700 1 6 8 8 8 8 8 8 8 8 8 8 8 8 8	1350 1300 1250 1200 1150 1100 1050 6 6 6 6 950 6 6 6 850 2 6 6 850 2 6 6 6 870 1 6 6 6 700 2 2 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 7 8 8 8 8	1350 1300 1250 1200 1150 1100 1050 6 6 6 6 6 6 950 6 6 6 6 6 850 2 6 6 6 6 850 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1350 1300 1250 1200 1150 1100 1050 6 6 6 6 6 6 6 900 6 6 6 6 6 6 850 2 6 6 6 6 6 850 2 6 6 6 6 6 6 6 750 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1350	1350 1300 1250 1200 1150 1100 1150 1100 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1350 1300 1250 1200 1150 1100 1150 1100 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

EQUIPMENT

DCE 1500 WELD CONTROL ETF12 FEEDER LM WELD HEAD

WELD PROGRAMMING

PARAMETERS

PENETRATION -1.8 mm START DELAY 250ms Varc PILOT LIMIT 15.0V to 33.0V

Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

Acceptance Criteria

Stud Broke	Preferred	6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	1
Overmelting of S	itud or Base Material	M

RECOMMENDED WELD SCHEDULE: 900A 30ms

and the second second second	#	DATA		#	DATA		#	DATA	*	#	DATA		#	DATA		Statistical Evalu	uation
TENSILE TEST at	- 1	1792	В	- 11	2106	В	21	1821	В	31	2153	В	41	2196	В	Average (X)	2022.5
RECOMMENDED	2	1834	В	12	2369	S	22	1680	В	32	2003	В	42	2008	В	Std. Dev. (8)	218.3
WELD SCHEDULE	3	2278	В	13	1619	В	23	2044	В	33	1707	В	43	2374	В	X-38:	1367.6
A CONTRACTOR OF THE PARTY OF TH	4	2274	В	14	2031	В	24	2294	В	34	2221	В	44	2106	В	Minimum	1470
	5	2036	В	15	2174	В	25	1996	В	35	2176	В	45	1496	ß	Maximum	2374
	6	2024	В	16	2074	В	26	2031	В	36	1993	ø	46	2279	ø	Range	904
	7	1944	В	17	2208	В	27	1968	В	37	2034	ø	47	2176	ø	* Fract	ure Mode
	8	2230	В	18	2236	В	28	1470	В	38	2148	ß	48	2075	В	Stud	1 pcs.
	9	1874	В	19	2133	В	29	1738	В	39	2207	В	49	2205	В	<u>B</u> ase	49 pcs.
	10	1001	R	20	1921	B	30	1921	8	40	1972	n	50	1875	R	Mald	0 nee

Table 13

FASTEMER DESCRIPTION: FASTEMER PLATING: EMHART FASTEMER PART#: BASE MATERIAL TYPE: BASE MATERIAL PLATING: BASE MATERIAL THICKNESS:

M6 Standard Flange Stud Zinc trivalent chrome 39026 USIBOR HSB AISI 1.25 mm

EQUIPMENT

ETF12 FEEDER

LM WELD HEAD

PARAMETERS

LIFT

DCE 1500 WELD CONTROL

WELD PROGRAMMING

PENETRATION -1.8 mm

START DELAY 250ms

Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD CURRENT +/- 30Amps

1.20mm

STUD NEGATIVE POLARITY

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke	Preferred	- 6
100%-91%	Preferred	5
90%-81%	Preferred	4
80%-71%	Acceptable	3
70%-61%	Unacceptable	2
60%-0%	Unacceptable	1

RECOMMENDED WELD SCHEDULE:

	#	DATA		£	DATA	*	#	DATA	*	#	DATA	*	#	DATA	*	Statistical Eva	luation
TENSILE TEST at	- 1	2050	В	- 11	2353	В	21	2166	В	31	1756	В	41	2042	В	Average (X)	2158.6
RECOMMENDED	2	2138	В	12	2187	В	22	2447	S	32	1933	В	42	2266	В	Std. Dev. (8)	170.6
WELD SCHEDULE	3	2172	8	13	2290	В	23	2369	S	33	1944	В	43	2361	В	X-38:	1646.8
	4	2177	В	14	2168	В	24	2395	S	34	2085	В	44	2420	В	Minimum	1756
	5	2161	В	15	2055	В	25	2040	В	35	1854	В	45	2183	В	Maximum	2447
	6	2317	ø	16	2195	В	26	2209	В	36	2183	В	46	2282	В	Range	691
	7	2232	۲	17	2150	В	27	2072	В	37	2362	В	47	1980	В	* Fran	cture Mode
	8	2393	В	18	1923	В	28	1841	В	38	2260	В	48	2011	В	<u>s</u> tud	3 pcs.
	9	1808	В	19	2126	В	29	2281	В	39	2101	В	49	2079	В	<u>B</u> ase	46 pcs.
	10	2342	В	20	1981	В	30	2302	В	40	2114	В	50	2373	В	<u>W</u> eld	0 pcs.

950A 30ms

FASTENER DESCRIPTION:
FASTENER PLATING:
EMHART FASTENER PARTIE:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL THICKNESS:

MS Large Flange Stud (7 mm head) Paint cutting threads Zinc trivalent chrome

Mild Steel Galvanneal 1.1 mm

	1500									
	1450									
52	1400									
E	1350									
A	1300									
(I) in Amps	1250			Ä 3		()				
	1200		5	5	5	5	5			
N	1150		5	5	5	5	5	į.		
CURRENT	1100		5	5	5	5	5			
5	1050		5	5	5	5	5	5		
0	1000		5	5	5	5	5	5		
WELD	950	9	5	5	5	5	5	5		
3	900		13	5	5	5	5	5		
	850	2 3	3	4	5	5	5	5		
	800		2	5	5	5	5	5		
	750		2	2	2	4	5	5		
	700		. 1	2	1	3	4	5		
	650							7 20 710		
	600			0 3					9	
	550					T T				1
	500	Acres V	2000001	Owner 3	67600		10000	10000	A.zac	1000
		20	25	30	35	40	45	50	55	60

WELD TIME (t) in milliseconds

EQUIPMENT

DCE 1500 WELD CONTROL ETF12 FEEDER

LM WELD HEAD

WELD PROGRAMMING

PARAMETERS

LIFT PENETRATION -1.8 mm START DELAY 250ms Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms

WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

Acceptance Criteria

100%-91% Preferred Unacceptable -0% Unacceptable melting of Stud or Base Material

RECOMMENDED WELD SCHEDULE:

1050A 40ms

	#	DATA	*	#	DATA	+	#	DATA	*	#	DATA		#	DATA	*	Statistical Eval	luation	
ENSILE TEST at	- 1	1465	В	- 11	1460	В	21	1466	В	31	1420	В	41	1460	В	Average (X)	1478.4	
ECOMMENDED	2	1442	В	12	1547	В	22	1449	В	32	1567	В	42	1430	В	Std. Dev. (8)	56.3	
ELD SCHEDULE	3	1523	В	13	1508	В	23	1405	В	33	1540	В	43	1516	В	X-38:	1309.6	
- 1	4	1472	B	14	1533	В	24	1573	В	34	1473	В	44	1509	В	Minimum	1334	
	5	1514	B	15	1541	В	25	1334	В	35	1481	В	45	1448	В	Maximum	1590	
	6	1358	В	16	1521	В	26	1452	В	36	1429	В	46	1474	В	Range	256	
	7	1558	В	17	1548	В	27	1487	В	37	1474	В	47	1420	В	* Fraci	ture Mode	
	8	1528	В	18	1457	В	28	1393	В	38	1448	В	48	1555	В	Stud	0 pcs.	
	9	1590	В	19	1390	В	29	1499	В	39	1487	В	49	1468	В	<u></u>	50 pcs.	
	10	1424	8	20	1417	R	30	1510	R	40	1472	R	50	1479	R	Weld	0 nce	

Table 15

FASTENER DESCRIPTION:
FASTENER PLATING:
EMHART FASTENER PART#:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL THICKNESS:

M6 Large Flange Stud (7mm head) Paint cutting threads Zinc trivalent chrome 29956

DP980 Galvanneal 1.0 mm

	1500									
	1450									
12	1400									
Amps	1350									
A	1300									
(I) in	1250									
	1200		5	5	5	5	5			
본	1150		5	5	5	6	5			
CURRENT	1100		5	5	5	5	5			
5	1050		5	5	5	5	6	5		
	1000		5	5	5	5	6	5		<u>l</u>
WELD	950	9	5	5	5	5	5	5		
3	900		1	5	5	5	5	5		
225	850	9	4	5	5	5	5	5		
	800		1	1	5	5	5	5		
	750	0.00	4	5	5	5	5	5	8	
	700		া	1	1	5	5	5		
	650	7				A 200 TO		A 200 FIR	7	
	600	V V		9 3					9	
	550									
	500	Sec. 1	200000	Same 3					S	
100		20	25	30	35	40	45	50	55	60

DCE 1500 WELD CONTROL ETF12 FEEDER LM WELD HEAD

EQUIPMENT

WELD PROGRAMMING PARAMETERS

LIFT 1.20mm PENETRATION -1.8 mm START DELAY 250ms

Varc PILOT LIMIT 15.0V to 33.0V Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

WELD TIME (t) in milliseconds

Acceptance Criteria

Stud Broke 100%-91% Preferred Acceptable 0%-0% Unacceptable

RECOMMENDED WELD SCHEDULE:

	#	DATA		#	DATA	*	#	DATA	*	#	DATA		#	DATA	*	Statistical Evalua	ation
TENSILE TEST at	1	1899	В	- 11	1870	В	21	1992	В	31	2042	В	41	1756	В	Average (X)	1961.2
RECOMMENDED	2	1950	В	12	2001	В	22	1928	В	32	2047	В	42	1903	В	Std. Dev. (8)	132.3
WELD SCHEDULE	3	2066	В	13	1647	В	23	1795	В	33	2117	В	43	2118	В	X-38:	1564.2
	4	1822	В	14	1936	В	24	1932	В	34	2013	В	44	1783	В	Minimum	1582
	5	1940	В	15	1837	В	25	2058	В	35	1582	В	45	2024	В	Maximum	2239
	6	1831	В	16	2102	В	26	1981	В	36	2003	B	46	2141	В	Range	657
	7	2044	В	17	1921	В	27	1867	В	37	2132	В	47	1901	В	* Fractu	re Mode
	8	1872	В	18	1764	В	28	2239	В	38	1861	В	48	2009	В	<u>s</u> tud	0 pcs.
	9	2075	В	19	2079	В	29	2020	В	39	2031	В	49	2185	В	<u>B</u> ase	50 pcs.
	10	2110	B	20	1901	R	30	1952	R	40	1999	R	50	1921	R	Mald	0 nce

1050A 40ms

Table 16

FASTENER DESCRIPTION:
FASTENER PLATING:
EMHART FASTENER PARTS:
BASE MATERIAL TYPE:
BASE MATERIAL PLATING:
BASE MATERIAL THICKNESS:

M6 Large Flange Stud (7mm head) Paint outling threads Zino trivalent ohrome 29968 USIBOR HSB AJSI

1.26 mm

	20	25	30	35	40	45	50	55	60
500									
550	- 8	- 3	9			i i	8	8 9	
600						0			
650	1		3			1	9	(A) (B)	
700		- 3	1	1	6	6	6		
750	- 8	1.0	1	- 6	- 6	6	- 6		
800		1 1	6	- 6	6	6	- 6		
850		- 1	2	6	6	6	6		
950	- 8	3.0	6	- 6	- 6	- 6	- 6		
950	- 3	- 6	1	- 6	- 6	- 6	- 6		
1000		6	- 6	6	- 6	6	6		
1050	- 3	6	- 6	- 6	6	- 6	0	(i)	
1100	- 3	- 6	- 6	- 6	- 6	- 6	Š.		
1150		6	6	6	6	6			
1200	- 3	6	6	- 6	- 6	6	<u> </u>	9	
1250	- 8					i i	0		
1300	7		8 8				60	(i)	
1350									
1400	- 9								
1450	3		à à			1	9		
1500									

EQUIPMENT. DOE 1500 WELD CONTROL ETF12 FEEDER

UM WELD HEAD

WELD PROGRAMMING

PARAMETERS.

PENETRATION -1.8 mm START DELAY 250ms Varc PILOT LIMIT 15.0V to 33.0V

Varc WELD LIMIT 15.0V to 33.0V WELD TIME +/- 6ms WELD CURRENT +/- 30Amps STUD NEGATIVE POLARITY

WELD TIME (t) In milliseconds

Acceptance Criteria

Stud Broke Preferred CON-91% Preferred Preferred Acceptable Unacceptable

RECOMMENDED WELD SCHEDULE: 1050A 40ms

Name and Address of the	2	DATA	*	*	DATA	*		DATA			DATA		2	DATA	*	Statistical Eva	luation
TENSILE TEST at	. 1	1986	8	11	1799	В	21	1616	8	31	1966	œ	41	1973	В	Average (X)	1916.3
RECOMMENDED	2	1970	8	12	1762	В	22	2117	8	32	2119	œ	42	1907	В	Std. Dev. (c)	138.1
WELD SCHEDULE	3	2109	8	13	1909	В	23	2032	8	33	1999	œ	43	1848	В	X-36:	1502.1
1	4	2017	8	14	1624	В	24	1818	8	34	2089	ø	44	1739	В	Minimum	1583
	- 6	1967	8	16	2031	В	26	2148	В	36	1926	œ	46	2036	В	Maximum	2146
	- 6	1683	ø	16	1999	В	28	1824	В	36	2015	в	48	1796	В	Range	563
	7	1686	В	17	1791	8	27	1984	В	37	1907	œ	47	2082	В	* Fra	cture Mode
	- 8	2071	ø	18	1927	ø	28	1980	В	38	2028	œ	48	2082	В	tud	0 pos.
	9	1844	В	19	1900	в	29	2027	8	38	1819	ø	48	1874	В	Base	60 pos.
	10	1896	В	20	1946	В	30	1716	8	40	1817	В	60	1807	В	Weld	0 pos.

2000 Town Center, Suite 320 Southfield, Michigan 48075 Tel: 248.945.4777 www.a-sp.org

