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Executive Summary 
 
 

Vehicle design engineers intuitively know that an unplanned mass increase in a component during 
vehicle design has a ripple effect throughout the vehicle; other components need to be resized increasing 
vehicle mass even more. The phrase mass begets mass describes this phenomenon. A more encouraging 
view of this behavior is considering a reduction in the mass of a component enabled by a new technology 
resulting in a greater mass saving for the overall vehicle. These secondary mass changes can be 
considerable—estimated at an additional 0.7 to 1.8 times the initial mass change. 
 
This mass compounding behavior may be modeled using subsystem mass influence coefficients—the  
incremental change in subsystem mass for a unit change in gross vehicle mass. Published data on 
influence coefficients is sparse, and that published are based on vehicles in the 1975–1981 model years. 
The purpose of this study is to update influence coefficients using contemporary vehicles. 
 
In this study, mass data from 35 vehicles have been analyzed to determine mass influence coefficients. 
The vehicles in the study covered Sedans, SUVs, Pick Ups, and Vans (See Appendix C for the specific 
models used). Linear regression was used to determine the influence coefficients. 
 
The primary results of this study are summarized in the illustration below.  The secondary mass change 
is that additional change due to resizing components when a vehicle mass change occurs during design 
(the primary change). This secondary change depends on the vehicle mass influence coefficient—the sum 
of coefficients for the subsystems. Indicated are results of previous studies from 1975 and 1981, along 
with results of this study for All vehicles, the SUV group, and the Sedan group. (The Pick Up and Van 
categories had an insufficient number of  vehicles to be represented alone.) 
 
When all subsystems can be resized, the secondary mass savings is from 0.8 to 1.5 kg/kg (1.25kg/kg is 
the estimate for the All vehicles group). When the powertrain has been fixed and is not available for 
resizing, the secondary mass savings is from 0.4 to 0.5 kg/kg (0.5kg/kg is the estimate for the All vehicles 
group). 

 
 

Section 8 provides an in depth example application of this data. 
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3. Preliminary Mass Estimation in Vehicle Design 
 
Vehicle mass is an important parameter during design. Subsystems are sized based on vehicle mass, and 
important product characteristics such as acceleration performance and fuel economy depend on vehicle 
mass. Given this importance of mass in vehicle design, mass estimation becomes a critical activity. The 
purpose of mass estimation varies with the design stage. 
 
During the product planning stage, or pre-configuration stage, the purpose of mass estimation is to 
determine general feasibility of a program and to set initial mass goals for vehicle subsystems.  At this 
stage, only a broad vehicle mission is identified; for example vehicle type and number of passengers. 
Because of this sparse data, mass estimation is often based on first order statistical models based on 
contemporary vehicles. 
 
In the next stage of design, the configuration stage, the purpose of mass estimation is to aid in decision 
making about which alternative technologies to include in the program, and also to add additional 
precision to subsystem mass goals. In this stage, mass estimation is based on both semi-empirical models 
and statistical data.  
  
During the detail design stage, post-configuration stage, the goal of mass estimation is monitor mass 
growth and to control to target. As the vehicle configuration is set, mass estimation is based on actual 
subsystem designs and prototypes. 
 
In this paper, we focus on the pre-configuration and configuration stages.  These are particularly significant 
as lasting decisions are made about which technologies and subsystem will be used. The implications of 
these decisions shadow all subsequent work. 
 
4. Mass Compounding Model 
 
Vehicle design engineers intuitively know that an unplanned mass increase in a component during 
vehicle design has a ripple effect throughout the vehicle; other components need to be resized increasing 
vehicle mass even more. The phrase mass begets mass describes this phenomenon. A more encouraging 
view of this behavior is considering a reduction in the mass of a component enabled by a new technology 
resulting in a greater mass saving for the overall vehicle. These secondary mass changes can be 
considerable—estimated at an additional 0.7 to 1.8 times the initial—primary--mass change. 
 
A means to quantify the secondary mass change is with a mass compounding model. In this model, each 
subsystem (denoted by i) is assigned an influence coefficient, γi. The influence coefficient is the change in 
the subsystem mass when gross vehicle mass undergoes a unit change. The physical interpretation of the 
influence coefficient is each subsystem is sized to some degree by the mass of the vehicle, and as the 
vehicle mass changes the subsystem must also be resized. 
 
The typical question we are interested in answering is;  
 

Given a balanced vehicle under design, a primary mass change now occurs 
during design. What is the final vehicle mass after resizing subsystems? 

 
The answer depends on the vehicle mass influence coefficient, γVEH. This the sum of coefficients for all 
subsystems which may undergo resizing.  The resulting vehicle mass is given by Equation 4.1 (see 
Appendix A for a derivation). 
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 where 0W  is the initial vehicle mass for which the subsystems are sized 
  ∆  is the initial mass change ( primary mass change) 
  ∞VW  is the resized, compounded vehicle mass 

  V∆Γ   is the additional  (secondary) mass change 
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  γI is the mass influence coefficient for subsystem i 
 
The resulting mass for subsystem i due to an initial increase of ∆; 
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 where iw   is the initial subsystem mass 

  ∞iw   is the resized subsystem mass 

  i∆Γ   is the additional secondary change 
  γV , γi  and ∆ are given above 

 

5. Previous work on Mass Influence Coefficients 
 
Published data on influence coefficients is sparse, and those published are based on vehicles in the 1975–
1981 model years [1, 2, 3].  Figure 5.1 summarizes the subsystem mass influence coefficients for two of 
these studies. Both studies used linear regression of measured subsystem mass data as described in the 
next section.  
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Summary of Previous Mass Influence Coefficients 
Figure 5.1 
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Based on these influence coefficients, the secondary vehicle mass savings using Equation 4.2 is 1.81 for 
the 1975 study, and 0.72 for the 1981 study. Note that resizing the body structure and powertrain 
contribute the most to this secondary mass savings. 
 
6. Description of this study 
 
In this study, we identify subsystem influence coefficients using regression. A function is fit relating the 
mass of subsystem i to gross vehicle mass, Figure 6.1. The influence coefficient is the slope of the fit curve. 
Data from 32 vehicles were used for the fit. The 32 vehicles were further divided into Sedan, SUV, and 
Pick up groups. Appendix B describes the model and the method used for estimation. Appendix C  
shows the scatter plots for each subsystem for each vehicle group.  
 

 
Influence Coefficient By Linear Regression 

Figure 6.1 
 
Figure 6.2 shows a comparison of influence coefficients by subsystem. Shown are the results for each 
vehicle group for both a linear function and also a power function, Equation B.3. A more complete table 
of results is contained in Appendix C-Tabular Summary of Subsystem Influence Coefficients. 
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An alternative means to estimate the mass influence coefficient is by the Ratio Method [7]. In this method, 
only the single reference vehicle data is needed. The subsystem mass-to-gross vehicle mass relationship is 
assumed as shown in Figure 6.3. In this case, the influence coefficient is given by Equation 5.1. 

 

 
Influence Coefficient By Ratio 

Figure 6.3 
 

Ratio method for influences coefficient determination, 

v

i
i W

w
=γ       Equation 6.1 

    where iw   current subsystem mass 
     WV  original gross vehicle mass 
 
7. Summary of Results  
 
The results of this study are summarized in Table 7.1 and graphically in Figure 7.1. 

 All Sedan SUV Ratio 
(sedan) 

Vehicle Influence Coefficient 
All subsystems free to resize .562 .599 .463 .532 

Vehicle Influence Coefficient 
All subsystems free to resize Except Powertrain .332 .331 .290 .391 

     

Secondary Mass savings 
All subsystems free to resize 

1.28  
Times primary 
mass change 

1.49 
times 

 

0.86 
times 

 

1.14 
times 

 
Secondary Mass Savings 

All subsystems free to resize Except Powertrain 
0.50 

 times 
0.49 

times 
0.41 

times 
0.64 

times 
 

Secondary Mass Savings 
 Table 7.1  
Indicated on Figure 7.1 are results of previous studies from 1975 and 1981, along with results of this study 
for All vehicles, the SUV group, and the Sedan group. (The Pick Up and Van categories had an insufficient 
number of  vehicles to be represented alone.) When all subsystems can be resized, the secondary mass 
savings is from 0.8 to 1.5 kg/kg (1.25kg/kg is the estimate for the All vehicles group). When the 
powertrain is not available for resizing, the secondary mass savings is from 0.4 to 0.5 kg/kg (0.5kg/kg is 
the estimate for the All vehicles group). 

Gross Vehicle Mass  WV 

γ = wi / WV Subsystem 
Mass

wi
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Secondary Mass Savings 

Figure 7.1 
 
 
8. Example Application 
 
A new vehicle is in the planning stage (pre-configuration). It is targeted at 5 passengers with a 120kg cargo 
capacity. The target test weight class for fuel economy evaluation is 2250Lb (1950Lb or 886kg curb mass). 
Mass reduction is a primary goal and several technologies are under investigation for application. The 
objectives of mass analysis at this stage are to 
 1) determine an initial mass estimate for the vehicle based on conventional design 

2) determine the most effective mass reduction technologies to apply 
3) estimate the vehicle mass when these technologies are used 
4) set subsystem mass goals for the detail design stage which are consistent with 1) , 2), & 3). 

 
Step 1: Pre Configuration Mass Estimation 
 
From human accommodation and dimensional benchmarking, the vehicle length is estimated at 4.732 m 
and width at 1.815m. From this sparse data, the vehicle curb mass can be estimated given the plan view 
area (relationship in Appendix C, Sedan section).  

1498.55kg mass curb
8.58858m)732.4)(815.1(

59.229)(75.147(kg) mass curb
2

2

=
==

+=

mmA
mA

 

Adding passenger mass and cargo mass, the gross vehicle mass is found. Finally, based on the Subsystem 
Mass fraction of Curb Mass (Appendix C in the Sedan Section) the mass of each subsystem may be 
estimated. For example, 
 
   (Body Non-structure mass) = 0.204 (Curb Mass) 
   (Body Non-structure mass) = 305.70 kg 
 
These steps are automated in the spreadsheet provided with this project, Figure 8.1. 

1981 1975
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Vehicle Mass Influence 

Secondary 
Mass 

Savings as 
Fraction of 

Original 
Change 

SUV Sedan All
0.9

Pick Up 

Vγ

VΓ

All subsystems free to resize 
All subsystems less powertrain 

Preliminary Vehicle Mass Estimation Malen and Reddy

9



 

 

 
 

Pre-Configuration Vehicle Mass Estimation 
Figure 8.1 

 
The above mass estimate is for a nominal vehicle as defined by the data set used in this paper given the 
footprint. This estimate is greater than the desired 886kg curb mass by 633kg. 
 
Step 2: Identify Mass Reduction Technologies 

With the nominal vehicle identified, potential mass reduction technologies may be identified for each 
subsystem.  For consistent evaluation of technologies, these steps are suggested; 
 
2a) The initial mass for each subsystem is given by the nominal vehicle of Step 1 (those identified in 

Figure 8.1 in this example). 
    Example: Front Suspension  subsystem mass=73.43kg 

2b) Now for a vehicle of the gross vehicle mass identified in Step 1 (1968.55kg) determine the new 
subsystem mass enabled by a particular technology. 

 
    Example technology: Shape optimization arms 
    Front Suspension  mass  with technology=66.09kg 

>>Note that this new front suspension is sized for the gross mass of the vehicle 
identified in Step 1. This is required for the later mass compounding analysis.<< 
 

2c) The mass savings is the difference between 2a) and 2b). 

    Example mass savings=73.43-66.09=7.34kg 

Preliminary Vehicle Mass Estimation Malen and Reddy
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These steps are summarized for several hypothetical technologies in Table 8.1 Columns 1, 2, 3. 

subsystem mass reduction technology mass savings cost  cost/unit mass (mc) 
  kg $ $/kg 

Tires & Wheels Minimum capacity wheels and tires 20.00 -20 -1.000 
non structure reduced sound treatment with 19.45 -5 -0.257 
Braking optimized pedal bracket 3.00 0 0.000 
rear suspension shape optimization 6.59 0 0.000 
body structure joint improvements 15.00 0 0.000 
closures hardware: optimization for bar 10.00 0.1 0.010 
front suspension shape optimization 7.34 0.2 0.027 
body structure AHSS optimization 70.00 3 0.043 
non structure reduce glass thickness 5.00 0.3 0.060 
non structure IP substrate optimization 21.43 2 0.093 
Braking tubular pedals 4.00 0.4 0.100 
non structure seat frame shape optimization 40.00 5 0.125 
closures AHSS optimization 12.46 2 0.161 
Fuel and Exhaust lower gage of exhaust 5.99 1 0.167 
bumper shape optimization 4.95 1 0.202 
steering tubular rack 2.00 0.5 0.250 
powertrain reduce wall thickness 27.72 7 0.253 
non structure carpet material 15.00 5 0.333 
non structure new seat system technology 5.00 5 1.000 
Fuel and Exhaust New muffler technology 10.00 50 5.000 
body structure carbon fiber underbody 60.00 500 8.333 

Potential Mass Reduction Technologies (Hypothetical Examples) 
Table 8.1 

It is important to note again that the mass reduction in Column 3 must be based on the vehicle mass 
identified in Step 1 to meet the assumptions of the mass compounding model. 
 
Step 3: Sort Mass Reduction Technologies by Cost 

This marginal cost of mass, mc,  (cost per unit mass reduction) may be used to sort which technologies to 
include in the new vehicle program.  
 
3a) Identify the cost difference to provide this technology in this specific vehicle. (Note, this may be a cost 

reduction and a negative value) 
   Example technology: Shape optimization arms 
   Front Suspension  cost increase  with technology=$0.20 

3b) Identify the marginal cost to provide the technology. 

  Example: marginal cost=mc=($0.20)/(7.34kg reduction)=0.027$/kg 

3c) From all identified mass reduction technologies, sort by increasing marginal cost 

  Example: Table 8.1 is sorted for 21 potential technologies 

3d) Filter technologies using marginal cost for inclusion in the vehicle configuration 
  Example: Include all technologies with mc ≤ 0.4 $/kg 
  The 18 technologies at the top of Table 8.1 are carried forward. 

Preliminary Vehicle Mass Estimation Malen and Reddy
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3e) For those technologies passing the filter, sum the total mass reduction for each subsystem. 
  Example; 

Subsystem  Mass reduction using technologies passing mc filter 
Non Structure  19.45+5+21.43+40+15=100.88kg 
Body Structure  15+70=85kg 
Front Suspension  7.34kg 
Rear Suspension  6.59kg 
Braking   3+4=7.00kg 
Powertrain  27.72kg 
Fuel and exhaust  5.99kg 
Steering   2.00kg 
Tire & Wheels  20kg 
Bumper   4.95kg 
Closures   10.0+12.46=22.46kg 

 
  These technologies provide a primary mass reduction total of 289.93kg. 
 
Step 4: Estimate Vehicle Mass Using Mass Compounding 

The mass savings opportunities found in Step 3, are primary mass reductions. They are sized for the 
vehicle mass found in Step 1; 1500kg curb mass. Now as each technology is applied to the vehicle, the 
curb mass is reduced. Due to this reduction, the subsystems may be resized. This resizing results in a 
secondary mass savings given by Equation 4.2, 
 
Primary mass savings ∆= 289.93kg 

Secondary mass savings =  ⎥
⎦

⎤
⎢
⎣

⎡
−

∆
)1( V

V

γ
γ

 , where the vehicle influence coefficient, γV, may be based 

on the results of this study shown in Figure 7.1. Taking a nominal value for the vehicle influence 

coefficient; γV = 0.532 gives ⎥
⎦

⎤
⎢
⎣

⎡
− )1( V

V

γ
γ

=1.1368 or a secondary mass savings=329.61kg.  

Thus the total mass reduction when the mass reduction technologies are applied is the compounded 
vehicle mass which is the sum of the primary reduction (289.93kg) and the secondary reduction (329.61kg) 
due to the subsystems being resized for the new reduced vehicle mass; 289.93kg + 329.61kg=619.54kg. To 
see how this compounded reduction is distributed across the subsystems, Equation 4.3 and 4.4 may be 
used. These steps are automated in the spreadsheet provided with this project, Figure 8.2. 
 
The spreadsheet of Figure 8.2 applies the mass influence coefficients found in this work to arrive at the 
compounded masses. The user may select from the All Vehicles, Sedan, SUV groups, use the Ratio method, 
Equation 6.1, or input a User Defined set of coefficients. Selection of which to use is based on the subject 
vehicle type and the predicted gross vehicle mass. The predicted mass should be within the range of data 
used to estimate the influence coefficients.  Interpolation limits for the influence coefficients are; 
 

All Vehicles group  1600<GVM<3150kg 
Sedan group   1600<GVM<2225kg 
SUV group    1920<GVM<3150kg 

 
If a prediction beyond these ranges is necessary, the Ratio method is recommended. 
 

Preliminary Vehicle Mass Estimation Malen and Reddy
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Compounded Mass Estimation (including powertrain resizing) 

Figure 8.2 

Step 5: Adjust Subsystem Mass to arrive at  Design Targets 
In Steps 1-4, we have used a rational procedure to estimate a vehicle's mass based on current practice, 
and then to estimate the influence of mass reduction technologies using a mass compounding model.  It is 
important during this stage to investigate alternative configurations. For example, below is the 
compounding model as  in Figure 8.2 except the powertrain has not been allowed to resize, Figure 8.2. 

 
Compounded Mass Estimation (powertrain not resized) 

Figure 8.2 
These mass estimation tools are intended to be highly iterative allowing rapid sensitivity studies to arrive 
at robust design targets for vehicle and subsystem mass. 
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Technical Appendix A 
 
Derivation of  mass model and influence coefficients 
 
Vehicle mass is the sum of the masses for n subsystems, 
 

niV wwwwW +++++= ......21    Equation A.1 
      Where  WV is the vehicle mass 
      wi is the mass of subsystem i 
 
For convenience, we include as subsystems the passengers, and cargo, so WV represents the maximum 
vehicle mass (gross vehicle mass). 
 
The mass of each subsystem depends upon the mass of the vehicle and other functional parameters.  
 

) ,( parametersfunctionalWfw Vi =    Equation A.2 
 

Note that some subsystems will have a strong vehicle mass dependence—for example, the powertrain  
subsystem—while for others the dependence on vehicle mass will be weak—for example, interior 
ventilation. 
 
Mass Influences Coefficients 
 
Imagine subsystem i is designed to function within a vehicle mass of WV with the resulting subsystem 
mass of wi. Now imagine a second vehicle which is slightly heavier at mass WV+dWV. Subsystem i is now 
sized for this slightly larger mass with the resulting subsystem mass of wi+dwi. We define the subsystem 
mass influence, γi, as the change in subsystem mass required when the vehicle mass is increased by one 
unit; 

V

i
i W

w
∂
∂

=γ      Equation A.3 

 
Consider a vehicle design with initial mass W0 and all subsystems sized for this mass. Now during 
preliminary design, an unexpected small mass increase of δ occurs in a subsystem. All subsystems must 
now be resized for this mass increase. The resulting change in vehicle mass is dW which we would like to 
determine. This can be quantified using subsystem mass influence coefficients;    
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The vehicle mass influence coefficient, γV, is defined as the change in mass of the vehicle, dW, due to a 
resizing of all the subsystems for a unit increase in mass.  
 

δ
γ dW

V =      Equation A.5 
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Comparing the last of Equations A.4 with A.5, we see that the vehicle mass influence coefficient, γV, is the 
sum of the influence coefficients for all subsystems. 

∑
=

=
n

i
iV

1

γγ      Equation A.6 

 
Mass Change during the Configuration Design Stage 
 
Now consider a balanced vehicle design with initial mass W0. It is now learned that the mass of a 
subsystem has changed by an amount ∆ for a new vehicle mass of W0+∆. 
 
Since the subsystems were sized for vehicle mass W0, they must be redesigned to function with the 
additional mass ∆: 
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But now the subsystems are sized for vehicle mass (W0+∆), and they must be resized for the additional 
mass ∆γV: 
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In a similar way, the subsystems are sized for vehicle mass (W0+∆+∆γV), and they must be resized for the 
additional mass ∆γV

2: 
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This resizing continues until we have: 
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Recognizing the sum in the parentheses is a geometric series we have; 
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Substituting the last of Equations A.8 into A.7 gives the mass of the vehicle after all resizing; 
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  Where  ∆ is the original mass change 
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 is the secondary mass change due to resizing subsystems. 

 
We define the Secondary mass coefficient for the vehicle,  ΓV ; 
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 and for each subsystem, Γi, as; 
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So the final vehicle mass due to an unexpected mass increase of ∆ is 
 

 VV WW ∆Γ+∆+=∞ 0     Equation A.12 
 

and the final mass for subsystem i is; 

iii ww ∆Γ+=∞     Equation A.13 
 
To prove that the sum of subsystem influence coefficients is the vehicle influence coefficient, begin with 
Equation A.12;  
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Technical Appendix B 
 

Modeling Subsystem Mass 
 
We assume that the mass of each subsystem depends on the gross vehicle mass and on other functional 
parameters [8]; 

)...(

) ,(
rba

rbaVii

Vi

PPPWCw

parametersfunctionalWfw
βββα=

=
    Equation B.1 

  Where  wi is a subsystem mass 
   WV is the gross vehicle mass 
   Pa,b,..r are functional parameters some of which are performance measures 

 
For example, consider the powertrain subsystem mass, wi. Its mass depends on the overall vehicle mass, 

α
ViWC . The mass also depends on vehicle acceleration performance; a

aP β , where Pa is the required 0-
60mph acceleration time. It also depends on the powertrain layout; TFWD, LRWD, AWD; Pb. Here Pb is 
an indicator variable: Pb =+1 for TFWD, Pb =0 for LWD, Pb =-1 for AWD. 
 
This relationship may be visualized graphically; 
 

 
Subsystem Mass Relationship 

Figure B.1 
 

With the model defined by Equation B.1, the subsystem influence coefficient is given by; 
 

VWV

i
i W

w
∂
∂

=γ      Equation B.2 

 
Estimation of subsystem influence coefficients 
 
To estimate the relationship between subsystem mass and vehicle mass, we fit observed data with both a 
linear and power model. In both cases, the fit was made using linear regression. 
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10 Vi
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    Equations B.3 
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In this study, we have not accounted for the subsystem mass dependence on functional parameters and 
have only considered the dependence on gross vehicle mass. Thus we are looking at a projection of the 
true relationship onto an x-y plane, Figure B.2. 
 

 
Projection of data on to x-y plane for curve fitting 

Figure B.2 
 
This necessity, has the practical effect of increasing the apparent lack of fit (measured by smaller R2 
values). Figure B.3 illustrates this by showing a typical residual error—the difference between a data 
point and the fit function. In our case, this residual is comprised of both pure error—randomness, along 
with the ignored dependence on functional parameters. Despite this assumption, the data fit is deemed to 
be satisfactory even though the R2 values are somewhat low due to this effect. 
 

 
Components of Residual Error 

Figure B.3 
 
For all fit equations, the R2 values are reported. Below is a brief summary of the meaning of this 
coefficient [12, 14].  
 
The variation of the un-fit data is measured by the sum of the squared deviations from the average value, 
Figure B.4. This sum is the total sum of squares, SSTO. 
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Total Sum of Squares 

Figure B.4 
 
Now a function is fit to the data as illustrated in Figure B.5. The remaining variation in the data is 
measured by the sum of the squared deviations from the function. This sum is the error sum of squares, 
SSE.   
 

 
Error Sum of Squares 

Figure B.5 
 
The R2 coefficient of determination is the fraction of variation explained beyond that using the average value only, 
and is given by; 
 

SSTO
SSESSTOR )(2 −

=     Equation B.4  

 
Thus any non-zero R2 indicates a reduction in variation provided by the fit function. Again in our case, the residual 
error, ri, contained in the SSE contains both pure error as well as the variation due to functional performance 
differences between the various vehicles as shown in Figure B.3. 

 
While R2 measures the overall goodness of fit of the model, we are interested in the influence coefficient. For a 
linear model, the influence coefficient is the slope of the fit line, β1. We can place a confidence interval around this 
parameter using Equation B.5 [13]; 
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For example, looking at the All Vehicles group and the Body Structure subsystem, we have an influence 
coefficient β1=0.1758 and R2=0.4542. Applying Equations B.5, 
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The 90% confidence interval is shown in Figure B.6. 

 
Confidence Interval for an Influence Coefficient 

Figure B.6 
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Data Appendix C 

 
Vehicles used in analysis 
 
Mass data were collected for 35 vehicles representing Sedans, SUVs, Pickups and Vans. For each vehicle, 
the mass of each functional subsystem (see next page for subsystem definitions) was calculated. 
Considerable effort was placed on consistency of the component masses contained in each subsystem 
across all vehicle sources. In addition to the subsystem mass, Gross Vehicle Mass, Curb Mass, and Number 
of Passengers were identified for each vehicle using independent sources [4, 5, 6]. 
 
The vehicles in this study are shown below. Due to the propriety nature of subsystem mass data, specific 
numerical values are not provided. 
 
Sedans:  15 (of which there is 1 duplicate) 
SUV:   12  
Pick Up:    5     Note: Due to the small sample size, Pick Up results  
        are less reliable than for Sedans and SUVs. 
Van:     3  (of which there is 1 duplicate) Note: Due to the insufficient sample size, vans were  
        not included as a vehicle group. 
  35 (33 vehicles used in study)  Note: For the 'All Vehicles' group, all non- 
         duplicate vehicles were included 
 
 
 
2004 VW Touareg  (SUV) 
2004 Mazda 3   (Sedan) 
2004 Nissan Murado  (SUV) 
2004 Toyota Sienna  (Van) (Dup.) 
2004 Hundai XG350  (Sedan) 
2004 Toyota Prius  (Sedan) 
2003 Lexus ES300  (Sedan) 
2003 Toyota Camry (US) (Sedan) 
2003 BMW 330i   (Sedan) 
2003 Infiniti G35  (Sedan) 
2003 Honda Accord  (Sedan)(Dup.) 
2003 Toyota Corolla Sedan (Sedan) 
2002 Audi A4   (Sedan) 
 
 
2007 Model Year 
Cadillac SRX   (SUV) 
Chevrolet HHR   (SUV) 
Saturn Outlook   (SUV) 
GMC Denali Sierra Crew Cab (Pick Up) 
Chevrolet Colorado  (Pick Up) 
Chevrolet Impala  (Sedan) 
Pontiac G6 SE1   (Sedan) 
Cadillac STS   (Sedan) 
GMC Yukon   (SUV) 
Saturn Vue   (SUV) 
 

 
2002 Honda Civic LX   (Sedan) 
2003 Honda Accord EX   (Sedan) 
2003 PT Cruiser    (SUV) 
2003 Toyota Matrix XRS   (SUV) 
2003 Toyota Tacoma 4x2  (Pick Up) 
2004 Dodge Ram 4x4 Light Duty (Pick Up) 
2004 Nissan Titan LE   (Pick Up) 
2004 Toyota Highlander Premium (SUV) 
2004 Toyota Sienna   (Van) 
2005 Honda Odyssey Touring  (Van) 
2005 Jeep Liberty   (SUV) 
2005 Jeep Wrangler   (SUV) 
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Functional Subsystem Mass Categories 

Each category below contains the set of components which provide a specific  vehicle function.  The assumption is 
that the mass required to provide that function varies in part with the gross vehicle mass. 
 
1.  Body Non-structural 

Sheet Metal 
Glass 
Seats 
Insulation 
Trim 
Heating and Ventilation 
Exterior Lighting 
Wiper 

2. Body Structure  
  Body Shell (Body-in-White less closures) 

Frame (if present) 
Engine Cradle (if present) 

3. Front Suspension 
Spring 
Control Arms 
Knuckle 
Stabilizer Bar 

4. Rear Suspension 

5. Braking Disc/Drum 
Caliper 
Hydraulic cylinder 

6a. Engine Engine 
Engine Cooling 
Starting System 

6b. Transmission 
Transmission  Note:  Engine and Transmission subsystems were combined to 
Drive Shafts   form the Powertrain Subsystem used in the final analysis. 
 

7. Fuel System and Exhaust 

8. Steering Rack 
Column 
Tie rods 
Power assist 

9. Tires & Wheels 

10. Electrical Entertainment, navigation 
Lighting 
Wiring 

11. Cooling Air Conditioning components 

12. Bumpers     Note:  Closures include hardware and door trim, with the 
13. Body Closures    exception of the GM Benchmark data where it is the door  
      shell only. These cases are noted on the graphs. 
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Selection of Influence Coefficients for Inclusion in Model 

 
 

1.00 0.50-1.00 

0.50 0.25 -0.50 
0.25 0.00-0.25 

  

No 0.09 Little 0.30 0.70 0.02 0.16 0.30 Closures 
Yes 0.01 Strong 0.32 0.40 0.38 0.28 0.21 Bumpers 
No 0.02 Moderate 0.41 0.08 0.74 0.57 0.27 Cooling 
No 0.02 Little 0.35 0.47 0.70 0.10 0.11 Electrical 
Yes 0.04 Strong 0.57 0.32 0.73 0.51 0.74 Tire & wheels 
(Yes) <0.01 Moderate 0.15 0.21 0.25 0.02 0.14 Steering 
No 0.03 Little 0.37 0.54 0.43 0.14 0.37 Fuel & exhaust 
Yes 0.20 Strong 0.72 0.81 0.48 0.86 0.73 Powertrain 
Yes 0.02 Strong 0.10 0.32 0.02 0.04 0.03 Braking 
Yes 0.03 Strong 0.49 0.99 0.41 0.37 0.21 Rear 
Yes 0.03 Strong 0.40 0.27 0.82 0.11 0.41 Front 
Yes 0.15 Strong 0.53 0.64 0.33 0.69 0.47 Body structure 
No 0.20 Little  0.41* 0.33 0.70 0.23 0.36 Non structure 

γ 
Magnitude 

Average Pick SUVs SedanAll 

Regression Coefficient R2 

Key *note: High R2 coefficient for Non-structure subsystem 
assumed to be due to co linearity of plan view area with GVM: 
wnon structure → (interior space) → (plan view area) →(GVM) 

Inclusion 
Criteria 

Physical 
link with 
vehicle 
mass 

Included 
in prior 

work 

No 
Yes 
No 

Yes/No 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
No 

Include 

Preliminary Vehicle Mass Estimation Malen and Reddy
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