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Executive Summary

Vehicle design engineers intuitively know that an unplanned mass increase in a component during
vehicle design has a ripple effect throughout the vehicle; other components need to be resized increasing
vehicle mass even more. The phrase mass begets mass describes this phenomenon. A more encouraging
view of this behavior is considering a reduction in the mass of a component enabled by a new technology
resulting in a greater mass saving for the overall vehicle. These secondary mass changes can be
considerable — estimated at an additional 0.7 to 1.8 times the initial mass change.

This mass compounding behavior may be modeled using subsystem mass influence coefficients —the
incremental change in subsystem mass for a unit change in gross vehicle mass. Published data on
influence coefficients is sparse, and that published are based on vehicles in the 1975-1981 model years.
The purpose of this study is to update influence coefficients using contemporary vehicles.

In this study, mass data from 35 vehicles have been analyzed to determine mass influence coefficients.
The vehicles in the study covered Sedans, SUVs, Pick Ups, and Vans (See Appendix C for the specific
models used). Linear regression was used to determine the influence coefficients.

The primary results of this study are summarized in the illustration below. The secondary mass change
is that additional change due to resizing components when a vehicle mass change occurs during design
(the primary change). This secondary change depends on the vehicle mass influence coefficient— the sum
of coefficients for the subsystems. Indicated are results of previous studies from 1975 and 1981, along
with results of this study for All vehicles, the SUV group, and the Sedan group. (The Pick Up and Van
categories had an insufficient number of vehicles to be represented alone.)

When all subsystems can be resized, the secondary mass savings is from 0.8 to 1.5 kg/kg (1.25kg/kg is
the estimate for the All vehicles group). When the powertrain has been fixed and is not available for
resizing, the secondary mass savings is from 0.4 to 0.5 kg/kg (0.5kg/kg is the estimate for the All vehicles
group).
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Section 8 provides an in depth example application of this data.
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3. Preliminary Mass Estimation in Vehicle Design

Vehicle mass is an important parameter during design. Subsystems are sized based on vehicle mass, and
important product characteristics such as acceleration performance and fuel economy depend on vehicle
mass. Given this importance of mass in vehicle design, mass estimation becomes a critical activity. The
purpose of mass estimation varies with the design stage.

During the product planning stage, or pre-configuration stage, the purpose of mass estimation is to
determine general feasibility of a program and to set initial mass goals for vehicle subsystems. At this
stage, only a broad vehicle mission is identified; for example vehicle type and number of passengers.
Because of this sparse data, mass estimation is often based on first order statistical models based on
contemporary vehicles.

In the next stage of design, the configuration stage, the purpose of mass estimation is to aid in decision
making about which alternative technologies to include in the program, and also to add additional
precision to subsystem mass goals. In this stage, mass estimation is based on both semi-empirical models
and statistical data.

During the detail design stage, post-confiquration stage, the goal of mass estimation is monitor mass
growth and to control to target. As the vehicle configuration is set, mass estimation is based on actual
subsystem designs and prototypes.

In this paper, we focus on the pre-configuration and configuration stages. These are particularly significant
as lasting decisions are made about which technologies and subsystem will be used. The implications of
these decisions shadow all subsequent work.

4. Mass Compounding Model

Vehicle design engineers intuitively know that an unplanned mass increase in a component during
vehicle design has a ripple effect throughout the vehicle; other components need to be resized increasing
vehicle mass even more. The phrase mass begets mass describes this phenomenon. A more encouraging
view of this behavior is considering a reduction in the mass of a component enabled by a new technology
resulting in a greater mass saving for the overall vehicle. These secondary mass changes can be
considerable — estimated at an additional 0.7 to 1.8 times the initial — primary--mass change.

A means to quantify the secondary mass change is with a mass compounding model. In this model, each
subsystem (denoted by i) is assigned an influence coefficient, vi. The influence coefficient is the change in
the subsystem mass when gross vehicle mass undergoes a unit change. The physical interpretation of the
influence coefficient is each subsystem is sized to some degree by the mass of the vehicle, and as the
vehicle mass changes the subsystem must also be resized.

The typical question we are interested in answering is;

Given a balanced vehicle under design, a primary mass change now occurs
during design. What is the final vehicle mass after resizing subsystems?

The answer depends on the vehicle mass influence coefficient, yven. This the sum of coefficients for all
subsystems which may undergo resizing. The resulting vehicle mass is given by Equation 4.1 (see
Appendix A for a derivation).
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W, =W, + A+ AL, Equation 4.1
I, = {7—\’} Secondary Mass Coefficient for Vehicle Equation 4.2
d-7)
where W, is the initial vehicle mass for which the subsystems are sized
A is the initial mass change ( primary mass change)
W,, s the resized, compounded vehicle mass
AL,  isthe additional (secondary) mass change
v is the mass influence coefficient for the vehicle given by ,, = i 7
i=1
" is the mass influence coefficient for subsystem i
The resulting mass for subsystem i due to an initial increase of A;
w, =W, +AI; Equation 4.3
I = {L} Secondary Mass Coefficient for Subsystem i Equation 4.4
(1 — Vv )
where W, is the initial subsystem mass
W,,  is the resized subsystem mass

AI,  is the additional secondary change

vv, vi and A are given above

5. Previous work on Mass Influence Coefficients

Published data on influence coefficients is sparse, and those published are based on vehicles in the 1975-
1981 model years [1, 2, 3]. Figure 5.1 summarizes the subsystem mass influence coefficients for two of
these studies. Both studies used linear regression of measured subsystem mass data as described in the

next section.
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Summary of Previous Mass Influence Coefficients
Figure 5.1
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Based on these influence coefficients, the secondary vehicle mass savings using Equation 4.2 is 1.81 for
the 1975 study, and 0.72 for the 1981 study. Note that resizing the body structure and powertrain
contribute the most to this secondary mass savings.

6. Description of this study

In this study, we identify subsystem influence coefficients using regression. A function is fit relating the
mass of subsystem i to gross vehicle mass, Figure 6.1. The influence coefficient is the slope of the fit curve.
Data from 32 vehicles were used for the fit. The 32 vehicles were further divided into Sedan, SUV, and
Pick up groups. Appendix B describes the model and the method used for estimation. Appendix C
shows the scatter plots for each subsystem for each vehicle group.

Subsystem . s
Mass o
\W. ./'.-
.../6. .
o
.'ﬂ.
70

Gross Vehicle Mass, Wy

Influence Coefficient By Linear Regression
Figure 6.1

Figure 6.2 shows a comparison of influence coefficients by subsystem. Shown are the results for each
vehicle group for both a linear function and also a power function, Equation B.3. A more complete table
of results is contained in Appendix C-Tabular Summary of Subsystem Influence Coefficients.
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Figure 6.2



An alternative means to estimate the mass influence coefficient is by the Ratio Method [7]. In this method,
only the single reference vehicle data is needed. The subsystem mass-to-gross vehicle mass relationship is
assumed as shown in Figure 6.3. In this case, the influence coefficient is given by Equation 5.1.

Subsystem v =wi /Wy
Mass i
Wi /‘.-
./.‘
./.
B

Gross Vehicle Mass Wy

Influence Coefficient By Ratio
Figure 6.3

Ratio method for influences coefficient determination,

i Equation 6.1
L =— quation 6.
Vi W,
where W, current subsystem mass
Wy original gross vehicle mass
7. Summary of Results
The results of this study are summarized in Table 7.1 and graphically in Figure 7.1.
All Sedan | suv | Ratio
(sedan)
Vehicle Influence Coefﬁgent 560 599 463 530
All subsystems free to resize
Vehicle Influence Coefficient
All subsystems free to resize Except Powertrain 332 331 290 391
. 1.28 1.49 0.86 1.14
Secondary Mass savings . . . . .
; Times primary times times times
All subsystems free to resize
mass change
Secondary Mass Savings 0.50 0.49 0.41 0.64
All subsystems free to resize Except Powertrain times times times times

Secondary Mass Savings
Table 7.1

Indicated on Figure 7.1 are results of previous studies from 1975 and 1981, along with results of this study
for All vehicles, the SUV group, and the Sedan group. (The Pick Up and Van categories had an insufficient
number of vehicles to be represented alone.) When all subsystems can be resized, the secondary mass
savings is from 0.8 to 1.5 kg/kg (1.25kg/kg is the estimate for the All vehicles group). When the
powertrain is not available for resizing, the secondary mass savings is from 0.4 to 0.5 kg/kg (0.5kg/kg is

the estimate for the All vehicles group).



Preliminary Vehicle Mass Estimation Malen and Reddy

2.5

N

2.0
Secondary |

Mass , ~{_..__ R L. I . T

Savings asi™ -

Fraction of
Original 1.0

|

- i

Change ~i :
0.5 ’/i' :

: !

|

1_‘V
0.0

SUV Al Sedan Bick Up.
0O 01 02 03 04 05 06 07 08 09

Vehicle Mass Influence %,

(7 All subsystems free to resize
All subsystems less powertrain

Secondary Mass Savings
Figure 7.1

8. Example Application

A new vehicle is in the planning stage (pre-configuration). It is targeted at 5 passengers with a 120kg cargo
capacity. The target test weight class for fuel economy evaluation is 2250Lb (1950Lb or 886kg curb mass).
Mass reduction is a primary goal and several technologies are under investigation for application. The
objectives of mass analysis at this stage are to

1) determine an initial mass estimate for the vehicle based on conventional design

2) determine the most effective mass reduction technologies to apply

3) estimate the vehicle mass when these technologies are used

4) set subsystem mass goals for the detail design stage which are consistent with 1) , 2), & 3).

Step 1: Pre Configuration Mass Estimation

From human accommodation and dimensional benchmarking, the vehicle length is estimated at 4.732 m
and width at 1.815m. From this sparse data, the vehicle curb mass can be estimated given the plan view
area (relationship in Appendix C, Sedan section).

curb mass (kg) =147.75A(m?) + 229.59

A = (1.815m)(4.732m) = 8.58858m°
curb mass =1498.55kg

Adding passenger mass and cargo mass, the gross vehicle mass is found. Finally, based on the Subsystem
Mass fraction of Curb Mass (Appendix C in the Sedan Section) the mass of each subsystem may be
estimated. For example,

(Body Non-structure mass) = 0.204 (Curb Mass)
(Body Non-structure mass) = 305.70 kg

These steps are automated in the spreadsheet provided with this project, Figure 8.1.
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Vehicle Plan View Area (m2)

A | B | ¢ | b | E | F | 6 | H |
1 |Select Data set: Sedan -
oA | [
Subsystem User Preliminary
Mass Defined Subsystem Preliminary Mass Estimate (kg)
Fraction of Mass Mass
5 Subsystem Curb Mass 0 100 200 300 400
4 |Body Non-structure I 30570
5 |Body Structure } 34017 .
_6 |Front Suspension ! 7343,
7 |Rear Suspension ! 65.94 .
8 |Braking ! 47.95 .
9 |Powertrain ) 27723,
10 |Fuel & Exhaust ! 59.94.
11 | Steering ! 20.98 .
12 |Tires & Wheels ! g7.41.
13 |Electrical ! 68.93 v
14 |Cooling ! 40.46«
15 |Bumpers I 32.97.
16 |Closures ! 6743
A7
18 |
19
20 |
21
22 |
23|
24 |

Vehicle Curb Mass (kg) 1498.55
Number of Passengers 350.00
Cargo Mass (kg)

Gross Vehicle Mass 1968.55

Pre-Configuration Vehicle Mass Estimation
Figure 8.1

The above mass estimate is for a nominal vehicle as defined by the data set used in this paper given the
footprint. This estimate is greater than the desired 886kg curb mass by 633kg.

Step 2: Identify Mass Reduction Technologies

With the nominal vehicle identified, potential mass reduction technologies may be identified for each

subsystem. For consistent evaluation of technologies, these steps are suggested;

2a) The initial mass for each subsystem is given by the nominal vehicle of Step 1 (those identified in
Figure 8.1 in this example).
Example: Front Suspension subsystem mass=73.43kg

2b) Now for a vehicle of the gross vehicle mass identified in Step 1 (1968.55kg) determine the new
subsystem mass enabled by a particular technology.

Example technology: Shape optimization arms

Front Suspension mass with technology=66.09kg
>>Note that this new front suspension is sized for the gross mass of the vehicle
identified in Step 1. This is required for the later mass compounding analysis.<<

2c) The mass savings is the difference between 2a) and 2b).

Example mass savings=73.43-66.09=7.34kg

10
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These steps are summarized for several hypothetical technologies in Table 8.1 Columns 1, 2, 3.

subsystem mass reduction technology mass savings | cost | cost/unit mass (mc)
kg $ $/kg

Tires & Wheels Minimum capacity wheels and tires 20.00 | -20 -1.000
non structure reduced sound treatment with 19.45 -5 -0.257
Braking optimized pedal bracket 3.00 0 0.000
rear suspension shape optimization 6.59 0 0.000
body structure joint improvements 15.00 0 0.000
closures hardware: optimization for bar 10.00 | 0.1 0.010
front suspension shape optimization 734 | 02 0.027
body structure AHSS optimization 70.00 3 0.043
non structure reduce glass thickness 500| 03 0.060
non structure IP substrate optimization 21.43 2 0.093
Braking tubular pedals 400 04 0.100
non structure seat frame shape optimization 40.00 5 0.125
closures AHSS optimization 12.46 2 0.161
Fuel and Exhaust | lower gage of exhaust 5.99 1 0.167
bumper shape optimization 4.95 1 0.202
steering tubular rack 200| 05 0.250
powertrain reduce wall thickness 27.72 7 0.253
non structure carpet material 15.00 5 0.333
non structure new seat system technology 5.00 5 1.000
Fuel and Exhaust | New muffler technology 10.00 50 5.000
body structure carbon fiber underbody 60.00 [ 500 8.333

Table 8.1

Potential Mass Reduction Technologies (Hypothetical Examples)

It is important to note again that the mass reduction in Column 3 must be based on the vehicle mass

identified in Step 1 to meet the assumptions of the mass compounding model.

Step 3: Sort Mass Reduction Technologies by Cost

This marginal cost of mass, mc, (cost per unit mass reduction) may be used to sort which technologies to
include in the new vehicle program.

3a) Identify the cost difference to provide this technology in this specific vehicle. (Note, this may be a cost
reduction and a negative value)

Example technology: Shape optimization arms

Front Suspension cost increase with technology=$0.20

3b) Identify the marginal cost to provide the technology.

Example: marginal cost=mc=($0.20)/(7.34kg reduction)=0.027%/kg

3c) From all identified mass reduction technologies, sort by increasing marginal cost

Example: Table 8.1 is sorted for 21 potential technologies

3d) Filter technologies using marginal cost for inclusion in the vehicle configuration

Example: Include all technologies with mc < 0.4 $/kg
The 18 technologies at the top of Table 8.1 are carried forward.

11
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3e) For those technologies passing the filter, sum the total mass reduction for each subsystem.

Example;

Subsystem Mass reduction using technologies passing mc filter
Non Structure 19.45+5+21.43+40+15=100.88kg
Body Structure 15+70=85kg

Front Suspension 7.34kg

Rear Suspension 6.59%kg

Braking 3+4=7.00kg

Powertrain 27.72kg

Fuel and exhaust 5.99kg

Steering 2.00kg

Tire & Wheels 20kg

Bumper 4.95kg

Closures 10.0+12.46=22.46kg

These technologies provide a primary mass reduction total of 289.93kg.

Step 4: Estimate Vehicle Mass Using Mass Compounding

The mass savings opportunities found in Step 3, are primary mass reductions. They are sized for the
vehicle mass found in Step 1; 1500kg curb mass. Now as each technology is applied to the vehicle, the
curb mass is reduced. Due to this reduction, the subsystems may be resized. This resizing results in a
secondary mass savings given by Equation 4.2,

Primary mass savings A= 289.93kg

Y
(S

on the results of this study shown in Figure 7.1. Taking a nominal value for the vehicle influence

Secondary mass savings= A[ } , Where the vehicle influence coefficient, )4, may be based

Vv
d-»)
Thus the total mass reduction when the mass reduction technologies are applied is the compounded
vehicle mass which is the sum of the primary reduction (289.93kg) and the secondary reduction (329.61kg)
due to the subsystems being resized for the new reduced vehicle mass; 289.93kg + 329.61kg=619.54kg. To
see how this compounded reduction is distributed across the subsystems, Equation 4.3 and 4.4 may be
used. These steps are automated in the spreadsheet provided with this project, Figure 8.2.

coefficient; = 0.532 gives [ } =1.1368 or a secondary mass savings=329.61kg.

The spreadsheet of Figure 8.2 applies the mass influence coefficients found in this work to arrive at the
compounded masses. The user may select from the All Vehicles, Sedan, SUV groups, use the Ratio method,
Equation 6.1, or input a User Defined set of coefficients. Selection of which to use is based on the subject
vehicle type and the predicted gross vehicle mass. The predicted mass should be within the range of data
used to estimate the influence coefficients. Interpolation limits for the influence coefficients are;

All Vehicles group 1600<GVM<3150kg
Sedan group 1600<GVM<2225kg
SUV group 1920<GVM<3150kg

If a prediction beyond these ranges is necessary, the Ratio method is recommended.

12
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A | B [ D E | F | & | H | 1 | J | K |
1 |Select data set: Ratio -
o | [
resize Pre-Config. Adjustments Compounded -
sub. Subsystem to  Subsystem |l compounded B secondary B pr|mary|
Influence system Mass Pre-Config. Mass
3 Subsystem Coefficient ? (kq) Mass kg) © LLL il Sl L
4 |Body Non-structure 0.000 305.70 20482 , '
5 |Body Structure 0173 w 14511 .
6 |Front Suspension 0.037 ¥ 4298 |
T |Rear Suspension 0033 » 3859 .
8 |Braking 0.024 ¥ 26,86 .
9 |Powertrain 0141 & 162.26 .
10 |Fuel & Exhaust 0.030 & 3508 .
11 | Steering 0.006 W 1626 .
12 |Tires & Wheels 0.049 46.75 .
13 |Electrical 0.000 68.93 «
14 |Cooling 0.021 & 2773w
15 |Bumpers 0.017 & 17.65 «
16 |Closures 0.000 44.97
17 | Sum Inf. Coeff 0.532
18 |Vehicle Curb Mass 879.01
19
20 |Passenger Mass 350.00
21 |Cargo Mass 120.00
22 |
23 | Gross Vehicle Mass 1968.55 1349.01
24
25 |Delta Mass from Pre-Config. -289.93 -619.54

Compounded Mass Estimation (including powertrain resizing)

Figure 8.2

Step 5: Adjust Subsystem Mass to arrive at Design Targets
In Steps 1-4, we have used a rational procedure to estimate a vehicle's mass based on current practice,
and then to estimate the influence of mass reduction technologies using a mass compounding model. It is
important during this stage to investigate alternative configurations. For example, below is the

compounding model as in Figure 8.2 except the powertrain has not been allowed to resize, Figure 8.2.
A | B [ D | E | F | ¢ | H | 1 | 4 K |
1 |Select data set: I Ratio
2
resize Pre-Config. Adjustments Compounded -
sub- Subsystem to  Subsystem |l compounded B secondary M primary |
Influence system Mass Pre-Config. Mass
3 Subsystem Coefficient ? (kg) Mass kg) © Ul Ll = L
4 |Body Non-structure 0.000 5 204.82 '
5 |Body Structure 0173 172.88 |
6 |Front Suspension 0.037 = 4833 .
7 _|Rear Suspension 0033 ¥ 4340 .
8 |Braking 0.024 ¥ 29.35 .
9 |Powertrain 0.000 [ 24951 .
10 |Fuel & Exhaust 0.030 3945 .
11 | Steering 0.006 W 16.12 .
12 |Tires & Wheels 0.049 = 53.84 .
13 |Electrical 0.000 68.93 .
14 |Cooling 0.021 & 30.67
15 |Bumpers 0.017 & 20.05 «
16 |Closures 0.000 4497 «
A7 Sum Inf. Coeff 0.391
18 |Vehicle Curb Mass 1498.55 1022.32
19
20 |Passenger Mass 350.00
21 |Cargo Mass 120.00
22|
23 |Gross Vehicle Mass 1968.55 1492.32

Figure 8.2

Compounded Mass Estimation (powertrain not resized)

These mass estimation tools are intended to be highly iterative allowing rapid sensitivity studies to arrive
at robust design targets for vehicle and subsystem mass.

13
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Technical Appendix A
Derivation of mass model and influence coefficients

Vehicle mass is the sum of the masses for n subsystems,

W, =W, +W, +...+ W, +...+W, Equation A.1

Where Wy is the vehicle mass
w; is the mass of subsystem i

For convenience, we include as subsystems the passengers, and cargo, so Wy represents the maximum
vehicle mass (gross vehicle mass).

The mass of each subsystem depends upon the mass of the vehicle and other functional parameters.
w, = f (W, , functional parameters) Equation A.2

Note that some subsystems will have a strong vehicle mass dependence—for example, the powertrain
subsystem —while for others the dependence on vehicle mass will be weak—for example, interior
ventilation.

Mass Influences Coefficients

Imagine subsystem i is designed to function within a vehicle mass of Wy with the resulting subsystem
mass of w;. Now imagine a second vehicle which is slightly heavier at mass Wy+dWy. Subsystem i is now
sized for this slightly larger mass with the resulting subsystem mass of wi+dw;. We define the subsystem
mass influence, y;, as the change in subsystem mass required when the vehicle mass is increased by one
unit;

oW

=— Equation A.3
oW,

7i

Consider a vehicle design with initial mass Wy and all subsystems sized for this mass. Now during
preliminary design, an unexpected small mass increase of § occurs in a subsystem. All subsystems must
now be resized for this mass increase. The resulting change in vehicle mass is dW which we would like to
determine. This can be quantified using subsystem mass influence coefficients;

dW:aW15+%§+...+ ‘ 5+...+8W”
oW, ow,, oW, ow,,
dW =6(y, +7, oty +ot7,) Equations A.4

dw
7:(;/1+;/2 +otyi ot y,)

The vehicle mass influence coefficient, yy, is defined as the change in mass of the vehicle, dW, due to a
resizing of all the subsystems for a unit increase in mass.

_aw

Equation A.5
o

Yv

15
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Comparing the last of Equations A.4 with A.5, we see that the vehicle mass influence coefficient, yv, is the
sum of the influence coefficients for all subsystems.

n
W= z Vi Equation A.6
i=1

Mass Change during the Configuration Design Stage

Now consider a balanced vehicle design with initial mass W,. It is now learned that the mass of a
subsystem has changed by an amount A for a new vehicle mass of Wo+A.

Since the subsystems were sized for vehicle mass Wy, they must be redesigned to function with the
additional mass A:

Resizing 1
mass change : A

resize subsystems due to mass change causes additional mass : Ay,
new vehiclemassW, = (W, + A) + Ay,

But now the subsystems are sized for vehicle mass (Wo+A), and they must be resized for the additional
mass Ayy:

Resizing 2
mass change : Ay,
resize subsystems due to mass change causes additional mass : Ay, 2
W, =W, +A+A7/V)+A7V2

In a similar way, the subsystems are sized for vehicle mass (Wo+A+Ayy), and they must be resized for the
additional mass Ay

Resizing 3
mass change : Ay,
resize subsystems due to mass change causes additional mass : Ay, :

2 3
Wy =W +A+Ay, +Ap, ") +Ayy
This resizing continues until we have:

Resizing m
W, =W, +A+Ayp, +Ap,° +Ap,° +..+ Ay, +..+Ap,", Mmoo
Equations A.7

W =W, +A+ Ay + 7+ 7+t 1)+t ™), m— oo

Recognizing the sum in the parentheses is a geometric series we have;
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S:(;/V+y\,2+7/\,3+...+y\,j+...+7Vm), m — oo

S=y, @ty +7 TR et et ny™), Moo

S=y,0+9) Equations A.8
SA-n)=w
Yv
S=—"—"—,whenO<y, <1
A-») Y

Substituting the last of Equations A.8 into A.7 gives the mass of the vehicle after all resizing;

A=)

Where A is the original mass change

W, =W, +A+ A{y—v} Equations A.9

{}/—V} is the secondary mass change due to resizing subsystems.

@-»)

We define the Secondary mass coefficient for the vehicle, I'y ;

I, = {7—\/} Equation A.10
a-»)
and for each subsystem, I';, as;
r _ }/ i E .
i~ quation A.11
(1 —7v )
So the final vehicle mass due to an unexpected mass increase of A is
W, =W, + A+ AT, Equation A.12
and the final mass for subsystem i is;
W, =W, +AI; Equation A.13

To prove that the sum of subsystem influence coefficients is the vehicle influence coefficient, begin with
Equation A.12;

W, ., =W, +A+AT,

W, =W, +W, +..+W, +...+W,

W, . =A+W +AL)+ (W, +AL) +...+ (W, + AL) +...(w, + AL,)

W, =A+W +W, +..+W, +..+W )+ A+, +..+ T +..4T)

W, =A+W,+AT, +, +...+1 +..+1,) Equation A.14
AT, =A(L +0, +.. 4T +..4+ 1)

A[ 7 }:A{ A N R ¢ }
(1_7/v) (1_7/v) (1_7v) (1_7/v) (1_7/v)

W Enty ety ety
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Technical Appendix B

Modeling Subsystem Mass

We assume that the mass of each subsystem depends on the gross vehicle mass and on other functional
parameters [8];

w, = f (W, , functional parameters)
a Pap B Be
w; =CW, " (P, P,™..P™)
Where wiis a subsystem mass

Wy is the gross vehicle mass
Pay,.r are functional parameters some of which are performance measures

Equation B.1

For example, consider the powertrain subsystem mass, w;. Its mass depends on the overall vehicle mass,

CW,“. The mass also depends on vehicle acceleration performance; Paﬁ *, where Pa is the required 0-

60mph acceleration time. It also depends on the powertrain layout; TFWD, LRWD, AWD; P,. Here P; is
an indicator variable: P, =+1 for TEWD, P, =0 for LWD, Py =-1 for AWD.

This relationship may be visualized graphically;

Log
Subsystem
Weight T )

Log
Functional
Parameter

;“: Surface defined
.................. ¢ by Equation B.1

Log
Gross Vehicle
Weiaht

Subsystem Mass Relationship
Figure B.1

With the model defined by Equation B.1, the subsystem influence coefficient is given by;

Vi = — Equation B.2
IYY: q

Estimation of subsystem influence coefficients

To estimate the relationship between subsystem mass and vehicle mass, we fit observed data with both a
linear and power model. In both cases, the fit was made using linear regression.

W, =CW,“ power

R . Equations B.3
W, = S, + W, linear
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In this study, we have not accounted for the subsystem mass dependence on functional parameters and
have only considered the dependence on gross vehicle mass. Thus we are looking at a projection of the
true relationship onto an x-y plane, Figure B.2.

Log L
Subsystem mass o9
Wi Functional Performance

._.:"':Surface defined by

_fwi = (CW, ") (functional performance) ” *

TR Projection of data when functional
............. .| performance not accounted for
Log
Gross Vehicle Mass
Wy
Projection of data on to x-y plane for curve fitting
Figure B.2

This necessity, has the practical effect of increasing the apparent lack of fit (measured by smaller R?
values). Figure B.3 illustrates this by showing a typical residual error—the difference between a data
point and the fit function. In our case, this residual is comprised of both pure error —randomness, along
with the ignored dependence on functional parameters. Despite this assumption, the data fit is deemed to
be satisfactory even though the R? values are somewhat low due to this effect.

Pure Error, g dueto

actual data T 7 VT P
Subsyns]taeg . e [ETE @ Misclassification of parts
A _ ®Incorrect vehicle
Wi residual / B model used
r Variation

®Clerical: recording
in subsystem

prediction | Performance

®*\Weighing parts

GVM Wy

Components of Residual Error
Figure B.3

For all fit equations, the R? values are reported. Below is a brief summary of the meaning of this
coefficient [12, 14].

The variation of the un-fit data is measured by the sum of the squared deviations from the average value,
Figure B.4. This sum is the total sum of squares, SSTO.
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® Sum of squares; total
Subsystem | D
mass| —g-o—o—8 ssTo=Yp° piis residual from mean
°
GVM
Wy

Total Sum of Squares
Figure B.4

Now a function is fit to the data as illustrated in Figure B.5. The remaining variation in the data is
measured by the sum of the squared deviations from the function. This sum is the error sum of squares,
SSE.

Subsystem Sum of squares; error

mass ) _ _
SSE=>r, r is residual from model

Error Sum of Squares
Figure B.5

The R? coefficient of determination is the fraction of variation explained beyond that using the average value only,
and is given by;

n2 _ (SSTO - SSE)

Equation B.4
SSTO

Thus any non-zero R? indicates a reduction in variation provided by the fit function. Again in our case, the residual
error, r;, contained in the SSE contains both pure error as well as the variation due to functional performance
differences between the various vehicles as shown in Figure B.3.

While R? measures the overall goodness of fit of the model, we are interested in the influence coefficient. For a
linear model, the influence coefficient is the slope of the fit line, B;. We can place a confidence interval around this
parameter using Equation B.5 [13];

data: X, X,, Xgr-Xq3 Vi, Yo Yoo Yo

9 = ﬂo + ﬂlx

A~N [prar(ﬂl)] Equations B.5
1\ -y’

var()= (n —2} > (x-%)°

i=1,n

For example, looking at the All Vehicles group and the Body Structure subsystem, we have an influence
coefficient $1=0.1758 and R?=0.4542. Applying Equations B.5,
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9 = /Bo + ﬂlx

¥ =-1.5294 +0.1758x
n=33

Var(p,) =.001198

The 90% confidence interval is shown in Figure B.6.

0.3
Body Structure 9.2
Mass
Influence 0.1
0.0 ————

Malen and Reddy

Equation B.6

90% confidence
interval for influence
coefficient

Confidence Interval for an Influence Coefficient

Figure B.6
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Data Appendix C
Vehicles used in analysis

Mass data were collected for 35 vehicles representing Sedans, SUVs, Pickups and Vans. For each vehicle,
the mass of each functional subsystem (see next page for subsystem definitions) was calculated.
Considerable effort was placed on consistency of the component masses contained in each subsystem
across all vehicle sources. In addition to the subsystem mass, Gross Vehicle Mass, Curb Mass, and Number
of Passengers were identified for each vehicle using independent sources [4, 5, 6].

The vehicles in this study are shown below. Due to the propriety nature of subsystem mass data, specific
numerical values are not provided.

Sedans: 15 (of which there is 1 duplicate)

SUV: 12

Pick Up: 5 Note: Due to the small sample size, Pick Up results
are less reliable than for Sedans and SUVs.

Van: _3 (of which there is 1 duplicate) Note: Due to the insufficient sample size, vans were

not included as a vehicle group.
Note: For the 'All Vehicles' group, all non-
duplicate vehicles were included

35 (33 vehicles used in study)

2004 VW Touareg (SUV) 2002 Honda Civic LX (Sedan)
2004 Mazda 3 (Sedan) 2003 Honda Accord EX (Sedan)
2004 Nissan Murado (SUV) 2003 PT Cruiser (SUV)
2004 Toyota Sienna (Van) (Dup.) 2003 Toyota Matrix XRS (SUV)
2004 Hundai XG350 (Sedan) 2003 Toyota Tacoma 4x2 (Pick Up)
2004 Toyota Prius (Sedan) 2004 Dodge Ram 4x4 Light Duty (Pick Up)
2003 Lexus ES300 (Sedan) 2004 Nissan Titan LE (Pick Up)
2003 Toyota Camry (US) (Sedan) 2004 Toyota Highlander Premium (SUV)
2003 BMW 3301 (Sedan) 2004 Toyota Sienna (Van)
2003 Infiniti G35 (Sedan) 2005 Honda Odyssey Touring (Van)
2003 Honda Accord (Sedan)(Dup.) 2005 Jeep Liberty (SUV)
2003 Toyota Corolla Sedan (Sedan) 2005 Jeep Wrangler (SUV)
2002 Audi A4 (Sedan)

2007 Model Year

Cadillac SRX (SUV)

Chevrolet HHR (SUV)

Saturn Outlook (SUV)

GMC Denali Sierra Crew Cab  (Pick Up)

Chevrolet Colorado (Pick Up)

Chevrolet Impala (Sedan)

Pontiac G6 SE1 (Sedan)

Cadillac STS (Sedan)

GMC Yukon (SUV)

Saturn Vue (SUV)
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Functional Subsystem Mass Categories

Each category below contains the set of components which provide a specific vehicle function. The assumption is
that the mass required to provide that function varies in part with the gross vehicle mass.

1. Body Non-structural
Sheet Metal
Glass
Seats
Insulation
Trim
Heating and Ventilation
Exterior Lighting
Wiper

2. Body Structure
Body Shell (Body-in-White less closures)
Frame (if present)
Engine Cradle (if present)

3. Front Suspension
Spring
Control Arms
Knuckle
Stabilizer Bar

4. Rear Suspension

5. Braking Disc/Drum
Caliper
Hydraulic cylinder

6a. Engine Engine
Engine Cooling
Starting System

6b. Transmission
Transmission Note:  Engine and Transmission subsystems were combined to
Drive Shafts form the Powertrain Subsystem used in the final analysis.

7. Fuel System and Exhaust

8. Steering Rack
Column
Tie rods
Power assist

9. Tires & Wheels

10. Electrical = Entertainment, navigation

Lighting
Wiring
11. Cooling Air Conditioning components
12. Bumpers Note:  Closures include hardware and door trim, with the
13. Body Closures exception of the GM Benchmark data where it is the door

shell only. These cases are noted on the graphs.
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ALL VEHICLES

Malen and Reddy
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Preliminary Vehicle Mass Estimation

Body Structural
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Malen and Reddy

Body Structural
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Preliminary Vehicle Mass Estimation
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Preliminary Vehicle Mass Estimation

Steering
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Preliminary Vehicle Mass Estimation
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Malen and Reddy

Cooling
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Preliminary Vehicle Mass Estimation

Pick Up
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Preliminary Vehicle Mass Estimation

Pick Up

Malen and Reddy
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Preliminary Vehicle Mass Estimation

Pick Up

Malen and Reddy
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Preliminary Vehicle Mass Estimation

Pick Up

Malen and Reddy
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Preliminary Vehicle Mass Estimation

Pick Up

Malen and Reddy
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Preliminary Vehicle Mass Estimation Malen and Reddy
Selection of Influence Coefficients for Inclusion in Model
Physical
Inclusion link with Included
Criteria Regression Coefficient R? vehicle Y in prior
mass Magnitude work  Include
All Sedan SUVs Pick Average
Non structure 0.36 0.33 0.41* Little 0.20 No No
Body structure 0.47 Strong 0.15 Yes Yes
Front 0.41 Strong 0.03 Yes Yes
Rear Strong 0.03 Yes Yes
Braking Strong 0.02 Yes Yes
Powertrain Strong 0.20 Yes Yes
Fuel & exhaust Little 0.03 No No
Steering Moderate <0.01 Yes (Yes)
Tire & wheels Strong 0.04 Yes Yes
Electrical . Little 0.02 Yes/No No
Cooling 0.41 Moderate 0.02 No No
Bumpers 0.32 Strong 0.01 Yes Yes
Closures 0.30 Little 0.09 No No

Key
| 000025

0.25 -0.50

*note: High R? coefficient for Non-structure subsystem
assumed to be due to co linearity of plan view area with GVM:
Whon structure — (INterior space) — (plan view area) —(GVM)
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