GREAT DESIGNS IN STEEL

Presentations will be available for download on SMDI's website on Wednesday, May 22

GREAT DESIGNS IN SIGNS IN

CORROSION PROTECTION OF AHSS IN CHASSIS APPLICATIONS

AUTO/STEEL PARTNERSHIP

Dean Kanelos

Nucor Automotive

May 15, 2019

PROJECT GOALS

- Develop a test to simulate 15-year corrosion environment for chassis components
 - Evaluate Crevice corrosion, GMAW effects & Gravel Chipping Effects
- Test different steels with different coatings and surface treatments:
 - Uncoated, Galvanized, Aluminized & Zinc Vapor Deposition
 - Standard Paint Systems & several Zinc-Rich Coatings

PAINT SYSTEMS

- Baseline: Degreased, Zinc Phosphate, E-Coat Only
- Degreased, Shot peened, Zinc-Rich Coating #1, E-Coat
- Clean & Acid Pickle, Chemical Phosphate,
 Zinc-Rich Coating #2, E-Coat
- Media Blast & Ultrasound Cleaning,
 Zinc Vapor Diffusion Coating, E-Coat

STEEL GRADES EVALUATED

GDIS

- HSLA 550X, GI
- 590SF, GI
- TRIP 780, GI
- CP780, GI
- DP780, GI
- DP980, GI
- 780SF, Bare
- A606 Weathering Steel, Bare
- A690 Marine Grade, Bare
- 22MnB5, AlSi coated

TEST COUPONS

- "Biscuit Tin"
 - GMAW Fillet Welds
 - Spot welds
 - Welded nut
 - Perch flange
 - Crevices
 - Dimple
 - Scribe (back)
- Lap Welded Coupons

GDIS

TEST PROCEDURE

Gravelometer at 3rd Year Points, i.e., 1, 3, 6, 9 & 12 only

At 90, 120 & 150 Cycles Extract a set of Lap Weld Coupons

Test Ends @ 180 Cycles Extract & Prepare Samples

GDIS

- 590 SF (GALV)_BASELINE eCoat, 2.0mm
- →780 SF (BARE)_BASELINE eCoat, 2.8mm
- -590 SF (GALV)_Primer A + eCoat, 2.0mm
- →590 SF (GALV)_Primer B + eCoat, 2.0mm

- →780 SF (BARE)_BASELINE eCoat, 2.8mm
- →780 SF (BARE)_Primer A + eCoat, 2.8mm
- →780 SF (BARE)_Primer B + eCoat + ACID PICKLE, 2.8mm

WELD COUPONS AFTER TESTING

BISCUIT TINS AFTER 15-YR SIMULATION

GDIS

CONCLUSIONS

- Baseline E-Coat only & DP780 GI + E-coat Only performed poorly
- Zinc rich Coating #1 showed noticeable improvement over Baseline
- Zinc rich Coating #2 with acid pickle showed noticeable improvement over Coating #1, which is likely due to acid pickle
- Zinc Vapor Deposition performed better than GI + E-coat but not as well as acid pickled GI coatings
- Bare weathering steel performed well
- Corrosion results were not linear over time, suggesting location in test chamber affected results

OTHER OBSERVATIONS

- Biscuit Tin performed well for evaluating corrosion, however too many data points to easily compare results
- Welded Coupons results were similar to Biscuit Tin results
- Acid Pickle of welds is believed to result in significant corrosion improvement, along with zinc-rich coating

GDIS

Thank You!

GREAT DESIGNS IN STEEL

Presentations will be available for download on SMDI's website on Wednesday, May 22