Delayed Cracking of Advanced High Strength Steel Solutions

A/SP Steel Testing Harmonization Task Force

Curt D. Horvath - General Motors Company
Eric S. Batt - ArcelorMittal USA
Mentor: Dean Kanelos - Nucor Steel

Co-Principal Investigator: Eric Batt - ArcelorMittal

Co-Principal Investigator: Curt Horvath – General Motors Company

Project Manager: Jonathan Smith, Auto/Steel Partnership

A/SP Team Members:

J. Bickham – ArcelorMittal
J. Cole – Ford Motor Company
R. J. Comstock – AK Steel
J. J. Coryell – General Motors Company
C. Matthew Enloe – General Motors Company
J. J. Fitzpatrick - ArcelorMittal
M. P. Hammerl – AK Steel
M. M. Huang – ArcelorMittal
P. Makrygiannis – AK Steel
A. D. Pearson – General Motors
R. Radzilowski – AK Steel
N. Ramisetti – ArcelorMittal
D. S. Ruhno – Ford Motor Company
J. Singh – FCA Group
P. Som -ArcelorMittal
J. Stachowski - Nucor
A. Thompson - Nucor
Y. Wang – AK Steel
S. Wolf - ArcelorMittal
W. Wu – AK Steel
Project Goals

- To develop a test method for ranking the relative susceptibility of zinc coated advanced high strength steels (AHSS) and ultra-high strength steels (UHSS) to hydrogen assisted cracking.

- To avoid the most common concerns with existing tests:
 - Artificial “charging” with hydrogen concentrations far above what would be expected in automotive environment
 - Development of a test that is not relevant to thin sheet steels
 - Development of a test that is complicated and/or requires R&D type of equipment
Project Goals

• To expand on the previous work done by the A/SP STHT which resulted in a draft procedure for determining the relative susceptibility of bare AHSS/UHSS

• To develop a representative test for zinc coated steels
Project Deliverables

- A test that is relatively easy to run and adapted for new grade validation
- A test that can be modified for specific OEM pass/fail criteria.
- A test that is applicable to sheet steel with or without additional manufacturing (coating, welding, etc.) or in-service corrosion inputs

Note: It is commonly thought that the risk for hydrogen assisted cracking cannot be completely eliminated (in all potential processes/environments) unless tensile strengths are restricted below 800 MPa
Hydrogen Assisted Cracking – Venn Diagram

- Material Tensile Strength >800 MPa
- High Continuous Stress / High Load
- Sufficient Hydrogen Ion Concentration

Cracking May Occur at Overlap
Previous Work Observations/Conclusions

• A bend test consisting of samples pre-strained to $\geq 70\%$ of their yield strength shows promise for evaluating hydrogen susceptibility

• Some materials/microstructure combinations with high tensile strengths have been shown as susceptible to hydrogen assisted cracking when exposed to test conditions

• Hydrogen related cracks occur very early in the test.
Previous Work Observations/Conclusions

- Multiple test labs have seen similar results when susceptible materials are evaluated to the new test method.

- The A/SP Sheet Steel Harmonization Task Force has developed a draft test method for testing uncoated steels.

- When testing zinc coated steels with 0.1N HCl, the generation of hydrogen during dissolution can lead to premature fracture.
Test Method

Test Sample Geometry

![Test Sample Geometry Diagram](image-url)
Test Sample Geometry

- Samples are strain-gauged and bent to the desired stress levels
- Fixtured samples are immersed in 0.1 N hydrochloric acid
Observation:

Susceptible materials at high strains, immersed in 0.1N HCl, exhibit large cracks after relatively short exposures to the acid solution.

pH ~1 (After 5 hrs)
Current Investigations

- Goal: Work with AET Integration, Inc. to determine adaptations needed to current draft procedure to allow testing of grades with zinc coatings

- Comparison of different concentrations of hydrogen source (NH$_4$SCN) to previously studied HCl.

- Testing of dual phase, fully martensitic and press hardened grades
Test Matrix

<table>
<thead>
<tr>
<th>Material Grade</th>
<th>Thickness</th>
<th>Coating</th>
<th>Strain Level of Test (% of Yield Stress)</th>
<th>Solution Concentration</th>
<th>Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP780T/420Y</td>
<td>1.0</td>
<td>HDGI</td>
<td>100%</td>
<td>1 3/5</td>
<td>6 18</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Bare</td>
<td>100%</td>
<td>1 3/3</td>
<td>4 12</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>EG</td>
<td>100%</td>
<td>1 3/3</td>
<td>4 12</td>
</tr>
<tr>
<td>MP980T/700Y LCE</td>
<td>1.4</td>
<td>Bare</td>
<td>100%</td>
<td>TBD TBD</td>
<td>12 36</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>EG</td>
<td>100%</td>
<td>1 3/3</td>
<td>4 12</td>
</tr>
<tr>
<td>MP980T/700Y LCE</td>
<td>1.4</td>
<td>EG</td>
<td>100%</td>
<td>TBD TBD</td>
<td></td>
</tr>
<tr>
<td>MS1500T/1200Y</td>
<td>1.4</td>
<td>EG</td>
<td>100% TBD BD TDB</td>
<td>1 3/3</td>
<td>12 36</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Bare</td>
<td>100% TBD BD TDB</td>
<td>1 3/5</td>
<td>24 72</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>EG</td>
<td>100% TBD BD TDB</td>
<td>1 3/5</td>
<td>24 90</td>
</tr>
<tr>
<td>MS1700T/1350Y</td>
<td>1.0</td>
<td>Bare</td>
<td>100% TBD BD TDB</td>
<td>1 5</td>
<td>30 90</td>
</tr>
<tr>
<td>HS1300T/950Y PHS</td>
<td>1.0</td>
<td>AlSi</td>
<td>100% TBD BD TDB</td>
<td>1 5</td>
<td>30 90</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>AlSi</td>
<td>100% TBD BD TDB</td>
<td>1 5</td>
<td></td>
</tr>
</tbody>
</table>

* All samples ran with bend parallel to rolling direction
** All samples ran with shear edge on top of bend specimens (in tension)
Test Results – First Batch

<table>
<thead>
<tr>
<th>Material</th>
<th>Solution</th>
<th>Initial pH</th>
<th>% of Yield Strength Tested</th>
<th>Total Specimens</th>
<th>Number of Specimens Cracked</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0mm DP780T/420Y HDGI</td>
<td>0.1N HCL</td>
<td>1.04</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1% NH₄SCN</td>
<td>5.60</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.3% NH₄SCN</td>
<td>5.50</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.0% NH₄SCN</td>
<td>6.06</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1.0mm MS1500 Bare</td>
<td>0.1N HCL</td>
<td>1.00</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1% NH₄SCN</td>
<td>6.73</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.3% NH₄SCN</td>
<td>5.40</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.0% NH₄SCN</td>
<td>5.57</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>1.0 mm MS 1500 EG</td>
<td>0.1N HCL</td>
<td>1.08</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>0.1% NH₄SCN</td>
<td>5.73</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.3% NH₄SCN</td>
<td>5.38</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.0% NH₄SCN</td>
<td>5.86</td>
<td>100%, 90%, 80%, 60%</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Average Mass Reduction (%) – First Batch

0.1N HCL 0.1% NH4SCN 0 3% NH4SCN 1.0% NH4SCN
Test Results – Second Batch

<table>
<thead>
<tr>
<th>Material</th>
<th>Solution</th>
<th>Initial pH</th>
<th>% of Yield Strength Tested</th>
<th>Total Specimens</th>
<th>Number of Specimens Cracked</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2mm DP980T/550Y Bare</td>
<td>0.1N HCL</td>
<td>1.05</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1% NH₄SCN</td>
<td>5.52</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.3% NH₄SCN</td>
<td>5.42</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.0% NH₄SCN</td>
<td>5.09</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1.2mm DP980T/550Y EG</td>
<td>0.1N HCL</td>
<td>1.05</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1% NH₄SCN</td>
<td>5.48</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.3% NH₄SCN</td>
<td>5.36</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.0% NH₄SCN</td>
<td>5.04</td>
<td>100%</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.2mm DP980T/700Y EG</td>
<td>0.1N HCL</td>
<td>1.04</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.1% NH₄SCN</td>
<td>5.48</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.3% NH₄SCN</td>
<td>5.37</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.0% NH₄SCN</td>
<td>5.04</td>
<td>100%</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Average Mass Reduction (%) – Second Batch

- 1.2 mm DP980T/550Y Bare
- 1.2 mm DP980T/550Y EG
- 1.4 mm DP980T/700Y EG

0.1N HCL 0.1% NH4SCN 3% NH4SCN 1.0% NH4SCN
Current Observations

• Use of NH$_4$SCN resulted in a significantly lower attack on the coatings than the previously used HCl.

• The lower rate of attack on the zinc coatings in the NH$_4$SCN solutions (ie low mass loss), likely resulted in low/little hydrogen evolution and lower amounts of hydrogen absorption.
Conclusions

• The use of a NH$_4$SCN solution appeared to greatly reduce or eliminate hydrogen evolution of zinc coated AHSS’s

• The use of NH$_4$SCN does show promise as an alternative test solution to .1N HCL, however, lower concentrations than those tested need to be evaluated for use on zinc coated substrate
Areas of Possible Future Work

- Investigate lower concentrations of NH$_4$SCN
- Investigate techniques for coating removal
 - Follow with acid immersion bend test
 - Test coated substrate to SEP1970 – Tensile Specimen with Punched Hole
- Others?
For More Information

Curt D. Horvath
General Motors Company
248-563-3394
Curt.D.Horvath@GM.com

Eric Batt
ArcelorMittal USA
248-304-2381
Eric.Batt@ArcelorMittal.com