

Auto/Steel Partnership

Laboratory Procedure

ASP LP#2.1 (06-2023) LIQUID METAL EMBRITTLEMENT GLEEBLE-BASED TESTING PROCEDURE

Version: 1.0 Date: June 13, 2023

880 Technology Drive, Suite C Ann Arbor, Michigan 48108 www.a-sp.org

This procedure is the result of an Ohio State University project, in cooperation with Ma2JIC and the NSF, commissioned by the Auto/Steel Partnerhip. The procedure that resulted from this project work follows as noted on the TOC.

Previous Editions:

• None

Changes:

• 1st Version

Table of Contents

1.0	Introduction	ii
1.1	Purpose 3	
1.2	Scope 3	
1.3	Referenced Documents	ii
2.0	Laboratory Procedure	1

Disclaimer

This document is a suggested procedure for anyone to use at their own risk. Anyone using this procedure must following all prevailing safety procedures. A/SP and parties involved in creating the procedure, do not any responsibility or liability for its use.

A/SP requests anyone encountering an issue with this procedure to contact A/SP immediately so that the issue can be corrected.

1.0 Introduction

1.1 Purpose

The following procedure was co-developed by the Auto/Steel Partnership (A/SP) and the Ohio State University (OSU) to quantitatively assess liquid metal embrittlement (LME) susceptibility of coated sheet steels. The procedure was instrumental in demonstrating variable LME susceptibility for advanced high strength steels (AHSS) and third generation advanced high strength steels (3GHASS) across a range of tensile strengths. Furthermore, data generated using the test procedure has been used to successfully model LME potential in resistance spot welding. Therefore, A/SP and OSU have documented the process for future use and for historical purposes.

This test is not intended nor suitable to develop production welding parameters. Its sole purpose is for suppliers, users and researchers to evaluate the relative LME susceptibility of various steel grades and coatings.

1.2 Scope

When certain metallic coatings (such as zinc) come in contact with a steel substrate held under sufficient tension at elevated temperature, the molten metal coating may penetrate into the solid steel substrate and embrittle the steel grain boundaries. The embrittlement can lead to cracking, known as Liquid Metal Embrittlement (LME).

A/SP has applied high temperature (Gleeble) tensile testing to characterize the LME behavior in coated steels using a procedure co-developed with the Ohio State University. Gleeble testing is preferred for a quantitative assessment of LME susceptibility but tends to be expensive and time consuming. The objective of the procedure was to identify the temperature and stroke rate various materials experience LME. Tests performed are similar to hot tensile pulls where materials are heated to a set temperature and pulled at a predetermined stroke rate until fracture. The test is applied to both coated and uncoated steel (coating removed) to show ductility loss resulting from LME.

As an alternative, A/SP has also developed the *ASP LP#3.1: Rapid Liquid Metal Embrittlement Test Procedure for Coated Sheet Steel* using resistance spot welding, which can provide a qualitative means of assessing LME susceptibility at lower cost and reduced time.

1.3 Referenced Documents

• ASP LP#3.1 (06-2023): Rapid Liquid Metal Embrittlement Test Procedure for Coated Sheet Steel

COLLEGE OF ENGINEERING

Department of Materials Science and Engineering Welding Engineering Program

Manufacturing & Materials Joining Innovation Center - MA²JIC

Antonio J. Ramirez Professor - Ma²JIC Director

1248 Arthur E. Adams Drive Columbus, OH 43221 (614) 292 8662 Ph. (614) 971 0788 Mob. ramirezlondono.1@osu.edu - ma2jic.osu.edu - mse.osu.edu

Liquid Metal Embrittlement – LME Gleeble-Based Testing Procedure

Developed in collaboration with A/SP

By,

Austin Gordon, Caleb Llaneza, Dr. Antonio J. Ramirez, Joe Jaskowiak, Dillon Randolph

The Ohio State University

Dr. Michael Karagoulis (GM), Dr. Hassan Ghassemi-Armaki (ArcelorMittal)

Auto/Steel Partnership - A/SP

January 13, 2019

THIS PAGE LEFT BLANK

1. Table of Contents

1.	Test Description and Objective	4
2.	Sample Design	4
3.	Tests Stages	5
4.	Preparing Samples: Scribe Lines	6
5.	Preparing Samples: Etching for Thermocouples	8
6.	Preparing Samples: Acid Immersion Process	10
7.	Turning on the Gleeble Machine	10
8.	Welding the Thermocouples to the Part	14
9.	Conducting the Gleeble Test	17
10.	Turning Off the Gleeble Machine	27
11.	Troubleshooting	.29
12.	Analysis	.36

1. Test Description and Objective

A procedure was developed to identify at what temperature (400 – 800 °C, 25 °C increments) and stroke rate (5, 50, 500 mm/s) various materials experience LME. Testing compared the galvanized material coating to its uncoated counterpart. Tests performed are similar to a hot tensile pull, materials were heated to a set temperature and then a predetermined stroke rate was applied until fracture. The Gleeble 3800 allowed for collection of force (kN) and stroke position (mm) data which was used to quantitatively determine material susceptibility to LME. The subheadings below will discuss in detail sample design and preparation prior to testing, the Gleeble testing procedure, qualitative and quantitative data collection, and data post-processing.

2. Sample Design

Figure 1: Gleeble tensile testing dimensions

Figure 2: Gleeble tensile coupon identification

3. Tests Stages

- 1) Prepare sample
 - a. Scribe lines
 - b. Etch and strip based on test
- 2) Attach thermocouples
- 3) Run test and verify cracking
- 4) Graph results in Origin
- 5) Analyze data

4. Preparing Samples: Scribe Lines

Each sample requires a transverse line scribed across the length of its reduced section. This scribe line acts as a reference when etching the samples for the test. To scribe line each sample:

1) Make two small scribe points down the middle of two samples shown in Figure 3.

Figure 3: Scribe points example

2) Lay several samples in-line with each other, placing the two samples with scribe points at the ends of the row. This arrangement is illustrated in Figure 4.

<u>NOTE:</u> Verify all samples are aligned with a straight edge/ruler to ensure each scribe line is made through the center of every sample.

Figure 4: Alignment of pre-scribed samples

3) Place a straight edge, such as a ruler, across the four scribe points and scribe a line down the middle of all samples using a hard, sharp object, such as a hobby knife. A depiction of the final scribed samples can be seen in Figure 5.

Figure 5: Row of completed scribed samples

- П Тне
 - 4) Completed reference lines should lie across the middle of every sample. Dimensional errors less than 0.5 mm are acceptable.

5. Preparing "Coated" Samples: Etching for Thermocouples

The scribe lines are then used as a guide for proper placement of the welded thermocouples during Gleeble testing. In order to create sufficient welds between the thermocouples and the samples, the galvanized zinc layer needs to be etched off. This process is described in the following steps:

- 1) Bring prepared samples to the fume hood and locate the following materials:
 - a. 2 glass petri dish
 - b. 1 cotton swab with a wooden shaft
 - c. Concentrated (12M) Hydrochloric Acid (HCI)
 - d. Ethanol spray bottle
 - e. 2 Plastic trays
 - f. Paper towels
 - g. 1000mL Beaker
 - h. Hot blower
- 2) Break or cut the cotton swab in the middle of its wooden shaft to create a sharp taper point as seen in Figure 6. The sharper point will provide more precision when etching the samples with HCI.

Figure 6: Broken shaft of cotton swab

- 3) Working under the fume hood, place a small amount (~30 mL) of concentrated HCl in a petri dish. <u>WARNING</u>: Concentrated HCl is very corrosive and will damage clothing and skin if contact is made.
- 4) Place the concentrated HCl back into its storage unit.
- 5) Place a plastic tray outside of the fume hood and cover with several paper towels to help samples dry in future steps.
- 6) Place another plastic tray and ethanol spray bottle underneath the fume hood.
- 7) Place the samples to be etched onto the plastic tray under the fume hood in one single file, unstacked line with the scribe lines facing upwards to be visible
 - a. To expedite the procedure, heat the samples with the blow dryer before etching. The heat will act as a catalyst and reduce the iterations etchant must be applied to the thermocouple weld locations.
- 8) Dip the tapered wooden tip of the cotton swab into the concentrated HCI. Be sure to wipe off any excess HCI using the rim of the petri dish.

9) Using the tapered cotton swab, carefully apply HCl onto two small spots along the ends of a sample's scribe line as depicted in Figure 7. Each spot should be ~0.2mm in diameter.

Figure 7: Etchant Spots

- a. <u>NOTE</u>: If an etched spot appears to be too large, the sample may need to be discarded. Do not panic; it is preferable to discard a sample rather than performing a Gleeble test that yields skewed or unusable data.
- 10) Repeat step 8 for all samples on the plastic tray under the fume hood.
- 11) Rinse the etchant off the samples with tap water in the sink next to the fume hood and immediately blow dry the samples with the hot blower over the sink. <u>WARNING</u>: Drying samples with paper towels causes sample oxidation. Be patient and use the hot blower until the sample is free of liquid.
- 12) Repeat steps 10-12 until thermocouple weld spots are etched to bare metal.
- 13) Under the fume hood, rinse all completed samples with ethanol over a designated petri dish catch then immediately dry the samples over the sink with the hot blower.
- 14) If more samples need to be etched, repeat steps 6-13 until all samples are finished
- 15) Rinse the wooden end of the broken cotton swab in the sink to wash away any residual HCI. Once completed, discard in the appropriate trash bin.
- 16) Carefully pour any residual HCl on the plastic tray into the petri dish of concentrated HCl. Be sure not to splash or spill this solution while pouring.
- 17) On the wall to the right of the fume hood, complete the chemical log sheet for the chemical waste container. Fill out the chemical waste type (ethanol and HCI), approximate total volume, and date onto the log sheet.
- 18) Carefully pour the contents of both the ethanol and HCl petri dishes into the chemical waste container.
- 19) Remove all items from the hood and wash the plastic trays and petri dishes.

- 20) Sort the etched samples and store them in a dry environment (i.e. desiccator).
- 21) The samples are ready to be tested in the Gleeble as "coated" samples.

6. Preparing "Bare" Samples: Acid Immersion Process

- 1) Under a fume hood, mix a solution of 1:1 hydrochloric acid and deionized (DI) water.
- 2) Fill the 1000mL beaker with solution to fully cover the sample.
- 3) Place spacers in the beaker to keep the samples off the bottom of the glass.
- 4) Under a fume hood, immerse three to four samples in the beaker of solution until bubbling stops.
- 5) After bubbling stops, remove the sample from the beaker using tongs and rinse in the sink with tap water thoroughly.
- 6) Dry the specimen using the hot blower over the sink.
- 7) Under a fume hood, rinse the sample with ethanol over a petri dish catch and blow dry again.
- 8) As the total number of samples that have been immersed increases, the bubbling action will be reduced. This indicates the solution needs to be replaced for further stripping. Follow steps 9 and 10 before replacing the solution. Begin with step 1.
- 9) On the wall to the right of the fume hood, complete the chemical log sheet for the chemical waste container. Fill out the chemical waste type (ethanol and HCI), approximate total volume, and date onto the log sheet.
- 10) Carefully pour the beaker of solution and ethanol petri catch dish into the chemical waste container.
- 11) Remove all items from the hood and wash the two plastic trays, 1000 mL beaker, and petri dish.
- 12) Sort the etched samples and store them in a dry environment (i.e. desiccator).
- 13) The samples are ready to be tested in the Gleeble as "bare" samples.

7. Turning on the Gleeble Machine

- 1) Check the clear tube on the back of the high bay chiller to ensure that it has a sufficient water level.
- 2) If the chiller does not have enough water, open the valve (~2 seconds) until the water level rises to an acceptable level in the tube on the back of the chiller (indicated by green lines on the tube).

Figure 8. High bay chiller water level

3) Place the "GLEEBLE IN USE" sign on the chiller.

Figure 9. "GLEEBLE IN USE" sign

4) Turn the high bay chiller to "ON."

Figure 10. High bay chiller "ON" switch5) Turn the chiller pump next to the Gleeble machine to "LOCAL."

Figure 11. Chiller pump "LOCAL" switch

- 6) Open the argon tank valve to allow gas to flow to the Gleeble. The right gauge on the tank should be above 150 psi (gas level in the tank). If the right gauge is below 150 psi (the last red tick on the dial), replace the argon tank appropriately. See Figure 12 for reference.
- 7) The left gauge on the argon tank should read 40 psi (gas pressure running to the Gleeble machine). If the left gauge is below 40 psi, replace the argon tank appropriately.

Figure 12. Gleeble argon gas tank gauges

8) Turn the Gleeble machine to "ON."

Figure 13. Gleeble "ON" button

- 8. Welding the Thermocouples to the Part
 - 1) Put on clean, latex gloves.
 - 2) Turn the thermocouple welder to "ON."

Figure 14a. Thermocouple welder "ON" switch

3) Set the thermocouple welder voltage to 35V

- 4) Find two thermocouple wires; one wire should be magnetic for the black (negative) terminal on the Gleeble, and the other wire should not be magnetic for the red (positive) terminal on the Gleeble. <u>NOTE:</u> Test to see if the wire is magnetic by using the magnet next to the Gleeble machine.
- 5) Ensure that the thermocouple wires are long enough to extend from the sample to the terminal in the Gleeble without experiencing tension.
- 6) Feed the wires through their respective insulation material to prevent the wires from shorting during testing. Ensure there is means to indicate both the positive and negative wires
- 7) Select an end of the thermocouple wire to be welded by locating a straight (not bent) portion of the wire close to that end.
- 8) Use wire cutters to cut the wire at the face of the straight portion. This cut is made at a 45° angle to create a "tip" at the end of the wire.
- 9) Wash the sample with ethanol again and dry with a "Kimwipe" prior to welding to remove any contaminants and reduce chances of oxidation during testing.
- 10) Place the sample to be tested in the thermocouple welding machine
- 11) Use the screw and lock mechanism to place the weld trigger so that it holds the thermocouple ~3 mm above the area on the sample to be welded. Turn clockwise to raise the trigger, counterclockwise to lower the trigger.

Figure 15. Distance from thermocouple wire and sample 12) Secure a thermocouple wire into the wire guide and clip.

Figure 16. Thermocouple wire, wire guide, and wire clip

- 13) Align the wire with the location of the intended weld along the scribe line edge.
- 14) Set the wire length so that it is just touching the sample at weld completion.
- 15) Raise the thermocouple and its guide so that it rests on the weld trigger.
- 16) While looking away or using the weld shield, press the "WELD" button.
- 17) Repeat steps 5-12 for the other wire. Be sure to give the other wire slack and not break the weld.

9. Conducting the Gleeble Test

1) Open the valve to the Gleeble chamber to release any potential vacuum.

Figure 17. Gleeble vacuum release valve and gauge

2) Press the "DOOR RELEASE" button on the Gleeble and open the door.

Figure 18. Gleeble "DOOR RELEASE" button

- 3) Set the copper sample mounts into the chamber.
- 4) Transfer the sample with welded thermocouples to the Gleeble, being careful not to separate the thermocouples.
- 5) Set the sample into the copper sample mount as seen in Figure 19.

Figure 19. Copper sample mounts and mounted sample

- 6) Place the sample and sample mounts into their respective Gleeble jaws.
- 7) On the Gleeble machine press "RUN" followed by "MECHANICAL." Both buttons should be illuminated

Figure 20. Gleeble "RUN" and "MECHANICAL" buttons

8) Use the "STROKE" dial to tighten the jaws on the Gleeble so that the Gleeble force gauge reads 2.5 kN. Turning the dial counter-clockwise loosens the jaws (reduces the force), and turning the dial clockwise tightens the jaws (increases the force).

Figure 21. Gleeble "STROKE" dial

The Ohio State University

9) Place the U-spacers between their respective sample mounts and Gleeble jaws.

- 10) Tighten the U-spacers to snug fit. Turn the left spacer nut "up" to tighten and the right spacer nut "down" to tighten.
- 11) Connect the thermocouples to the T/C2 terminals in the Gleeble machine. The magnetic thermocouple goes to the negative (black) port, and the non-magnetic thermocouple goes to the positive (red) port.
 - a. Be sure that no bare thermocouple wires are touching
 - b. If two pairs of thermocouple wires are to be used, connect the "reference" wires to the T/C2 port and the other pair to the T/C3 port

Figure 23. Thermocouple terminals in the Gleeble

- 12) Close the Gleeble vacuum chamber valve.
- 13) Set the Gleeble vacuum to "ROUGHING" then press "VACUUM RUN"

Figure 24. Gleeble "VACUUM RUN" and "VACUUM ROUGHING" buttons 14) Monitor the vacuum level until it reaches $3.2x10^{-1}$ torr.

Figure 25. Gleeble monitor screen

15) Once the Gleeble control panel reads the chamber pressure as $3.2x10^{-1}$ torr, press "VACCUUM STOP" then "TANK FILL" to fill the chamber with argon gas.

Figure 26. Gleeble "TANK FILL" button

- 16) When the dial above the Gleeble chamber that measures the pressure in the chamber reaches 15 mmHg, press "TANK FILL" again to stop the argon gas.
- 17) Press the Gleeble "VACUUM RUN" button again.
- 18) Once the Gleeble control panel reads the chamber pressure as $3.2x10^{-1}$ torr, press "VACCUUM STOP" then "TANK FILL" to fill the chamber with argon gas.
- 19) When the dial above the Gleeble chamber that measures the pressure in the chamber reaches 15 mmHg, press "TANK FILL" again to stop the argon gas.
- 20) Use the stroke dial on the Gleeble control to zero the force reading (with a tolerance of +/-0.3 kN).
- 21) On the computer, double click "GLEEBLE-SHORTCUT"
- 22) Double click "Henry"
- 23) Double click the sample identification letter (ex: "F")
 - a. If the sample identification letter is not there, create a new folder with the sample's identification letter
- 24) Double click your sample shape (i.e.: "Notch" or "Sub-Size")
 - a. If the sample shape is not there, create a new folder for the sample's shape
- 25) Open any .qst file in this folder and edit your file accordingly as seen in Figure 27.

File	e Edit	Compose Gleeb	le User Window Help		
-	3 🖬	* 🖻 🏙 🔊	AA A, 3 > =		
1	# L	Time	Axis 1 Axis 2	Axis 3	Comment
1		System	Setup Limits: Comp	pression=-150mm, Fo	rce=50000kat. Heat=100%
2		Stress/Strain	Axial strain using Stroke, I = 1	2.00mm, d = 10.00mr	When changing the program
3		Acquire	Force Force.line PowAngle P ⁻ TC3	Temp Stroke TC2	temperature, remember to edit the
4		*			heating rates. To do this change the
5		*			Time value in row 14 using the
6		*			equation Time -
7		Start	🛛 Mechanical 🗳 High	Thermal	(Row 14, Axis 3) - (Row 12, Axis 3)
8		Mode	Force(kN) Vedge(cm)	- TC2(C)	500
9		Sample	10.0Hz		In this example, $Time = \frac{750-25}{2} =$
10		00:05.0000	1.0	25 L	.ig 500
11		00:05.0000	0.0	0 25 F	Return to zero stress
12		00:00.5000		0 25 H	Hold to stabilize force
13		Sample	105.JHZ		
14		00:01.4500	0.0	0 750 H	IR 500C/s
15		00:00.2000	0.0	0 800 F	Prevent overshoot, reduce HR to 250C/s
16		00:00.2000	0.0	0 800 H	Hold to stabilize temperature
17		Sample	5000.0Hz		
18		GSL>	set thermal to off		To change your program
19		GSL>	delay 5 msec		temperature, edit the Axis 3
20		Zero	Stroke		column of rows 14, 15, and
21		Mode	Stroke(mm) - Wedge(cm)	▼ TC2(C)	16 where rows 15 and 16 is
22		GSL>	delay 5 msec		your program temperature
23		GSL>	eve 50 msec if Force	2 > 12 kN	and row 14 is your program
24		GSL>	go stop		temperature minus 50
25		GSL>	end 20.00		
26		00:00.0600	30.00	25	
27		Samp	25.00	0 25	and the second
28		End	Meebasias		
29			i viecnanicai 🗖 High		
		To cha	nge vour head rate		
		edit	the time (units in	Be sur	e to cneck that all .qst files
		secon	ds) value in row 26	ha ha	ve this change prior to
		usi	ng the equation	runnin	g. Otherwise when testing
		Uand D	$a_{ta} = \frac{Distance}{Distance}$ where	at st	rain rates of 500 and 50
		пеци К		mm/s	the structure will not zero prior
4		the value	e 30.00 mm in row 26		to stroking.

Figure 27. Gleeble .qst file set-up

26) Hit "SAVE AS" and rename the file using the following naming convention:

27) Hit "RUN" on the computer.

Glack	la II. Mr. i			THE PART OF
ie uleed	ie User Window	/ Help	Click t	o run
3 9			prog	ram
me	Axis 1	Run Axis 2	Axis	3 Comm
stem	Setup	Limits: Compre	ession=-150	nm, Force=50
s/Strain	Axial strain usin	g Stroke, I = 12.	00mm, d = 1	0.00mm
quire	Force Force.line	PowAngle PTe	mp Stroke T	C2
	100			
	Mechanical	High		
>	Force(kN)	Wedge(cm)	TO2(0)	
mple	10.0Hz	versge(onn) 🔹	102(C)	
05.0000	1.0			
05.0000	0.0	0		25 Light tension
:00.5000	0.0	0		25 Return to z
	0.0	0		05 11 11

Figure 28. Gleeble .qst "RUN" button on the computer

- 28) After the Gleeble test is complete and the sample has fractured, let it cool in the chamber for two minutes to prevent oxidation.
- 29) Save the Gleeble data onto a flash drive or immediately upload to Buckeye Box.
 - a. If you save the data to a flash drive, upload it to Buckeye Box immediately.

Figure 30. Origin force v. stroke plot creation

30) Open the .d0x file for the test to analyze the data in Origin. Ensure that the test ran and recorded the data to completion and verify that the TC2 temperature and program temperature at the maximum programmed temperature are within an acceptable value.

The Ohio State University

- a. Create a new project folder in origin each time a new material is tested.
- b. Plot FORCE vs. STROKE in Origin.
- c. Compare plots to check for liquid metal embrittlement and validity of data.
- 31) Vent the chamber by opening the chamber release valve on the machine.
- 32) Press "DOOR RELEASE" and open the door to the Gleeble chamber.
- 33) Loosen and remove the U-spacers between the sample mount and the Gleeble jaws.
- 34) Place the aluminum tool between the two sample mounts as seen in Figure 31. Adjust the stroke dial as necessary to get the aluminum tool in place.

Figure 31. Aluminum tool for sample removal from Gleeble jaws

- 35) Press "RUN" and "MECHANICAL" on the Gleeble controls then slowly turn the stroke dial until one of the sample mounts loosens from the Gleeble jaws. Remove the sample half from the sample mount.
- 36) Place the aluminum tool against the remaining sample mount as seen in Figure32. Adjust the stroke dial as necessary to get the aluminum tool in place.

The Ohio State University

Figure 32. Aluminum tool to remove remaining sample mount from Gleeble jaw

- 37) Turn the stoke dial until the sample mount loosens from the Gleeble jaw. Remove the sample half from the sample mount.
- 38) Label one of the sample halves with a Sharpie, tape the parts together, and place in a small plastic bag. <u>NOTE:</u> Be careful not to scrape the crack interface against the other half of the sample.
- 39) Using the stroke dial on the Gleeble controls, return the Gleeble jaws to their original starting position.

10. Turning Off the Gleeble Machine

- 1) Press "MECHANICAL" and "RUN" until unilluminated (off) on the Gleeble controls.
- 2) Wipe down the Gleeble chamber with a "Kimwipe" and ethanol.
- 3) Close the Gleeble chamber door, shut the chamber valve, and press "VACUUM RUN."
- 4) When the vacuum gauge above the Gleeble chamber reads 15 mmHg, press "VACUUM STOP" to stop the vacuum.
- 5) Press the "OFF" button on the Gleeble.
- 6) Tighten shut the argon tank behind the Gleeble.
- 7) Turn off the thermocouple welder.
- 8) Turn off the cooling unit next to the Gleeble.
- 9) Turn off the high bay chiller and remove the "GLEEBLE IN USE" sign.

11. Troubleshooting

1. The Gleeble is aborting my program mid-test ("46 – aborted" is likely displayed on the Gleeble console).

While there may be other problems causing this program to abort, it is likely that the force applied to your sample is exceeding a certain threshold. In the program on line 24, there is a command stating "event safeload if Force > X kN" which can be seen in Figure 33.

	#	L	Time	Axis 1	Axis 2		Axis 3		Comment
1			System	Setup	Limits: Comp	ressio	n=-150m	m, F	orce=50000kgf, Heat=100%
2			Stress/Strain	Axial strain usin	g Stroke, I = 12	2.00mr	n, d = 10	.00n	nm -
3			Acquire	Force Force.line TC3	PowAngle PT	emp S	troke TC	2	
4									
5									
6		1				10		_	
7			Start	Mechanical	🗹 High	2	Thermal		
8			Mode	Force(kN)	Wedge(cm)	- TC	2(C)		
9			Sample	20.0Hz					
10			00:05.0000	1.0		0		25	Light tension to seat jaws/grips
11			00:05.0000	0.0		0		25	Return to zero stress
12			00:00.5000	0.0		0		25	Hold to stabilize force
13			Sample	2000.0Hz					
14			00:01.4500	0.0		0		750	*HR 500C/s (test temp -50C)
15			00:00.2000	0.0		0		800	*Prevent overshoot, reduce HR to 250C/s (test te
16			00:00.2000	0.0		0		800	*Hold to stabilize temperature (test temp)
17			Sample	10000.0Hz					
18			GSL>	set thermal t	o off				
19			00:00.0050	0.0		0		25	Extra safeguard for: "set thermal to off"
20			GSL>	delay 5 msec					
21			Zero	Stroke					
22			Mode	Stroke(mm) -	Wedge(cm)	- TC	2(C)		
23		1	GSL>	delay 5 msec					
24		1	GSL>	event safeloa	d if Force	> 8 k	N	_	Line 24 in the
25			GSL>	go stop					
26		1	GSL>	end					program, and the
27			00:06.0000	30.00		0		25	focus of this solution
28			Sample	10.0Hz					
29			00:12.0000	35.00	No.	0		25	Buffer to prevent rapid stopping of jaws
30			End	Mechanical	High		Thermal		

Figure 33. Gleebe test code error "safeload"

This means that if the force exceeds "X", the program will abort. The current safeload, not shown in Figure 33, is set at 35 kN, but previous programs may have a safeload set at a lower level (8 kN in Figure 33). If your event safeload is less

than 35, increase it to 35 and try again. If it is set at 35 kN and you are still encountering this problem, open your program and follow these steps:

CUH650x50-	Last - QuikSim2 - ITa	able - G:\quiksi	m\gleeble\l-	1) Click	"Window	/″			_ - ×
File Edit	Compose Gleeble	User Wind	ow Heip	Contraction of the last	All second of the	-			- 6
	Image: System Stress/Strain Acquire * •	Axi Set xial str orce Fc C3	Cascade File Arrange Icons Close All Message Graph Real time data Console web 1 Table - G:\quiksi	[↓] m\gleeble\Henry\	Test Data\H\Sub-Si:	ze\CUH65			
7	Start	Mech	2 Messages						
8	Mode	orce(kN)	Vedge(cm)	- TC2(C)	~			_	
9 10 11	Sample 2 00:05.0000 00:05.0000	20.0HZ	1.0 0.0	0	25 Light ti 25 Return a	2) Clic	ck "Graph"		
12	00:00.5000		0.0	0	25 Hold to s	stabilize force			1. Carlos and
13	Sample	2000.0Hz	2.0	0	600 *HB 500	IC/s (test temp -	50C) (adjust this row		
14	00:00 2000		0.0	0	650 *Prevent	t overshoot redu	ice HR to 250C/s (tr	est te	
16	00:00.2000		0.0	0	650 *Hold to	stabilize tempera	ature (test temp)		
17	Sample	10000.0Hz					(p)		a contract
18	GSL>	set therma	l to off						A STREET, STRE
19	00:00.0050		0.0	0	25 Extra sa	feguard for: "set	thermal to off"		
20	GSL>	delay 5 ms	ec						
		~ .	THE OWNER DESIGNATION.	Concession in the local division of the loca				10000	

Figure 34. Gleeble troubleshooting manual step one and two

The Ohio State University

Following these steps will bring up a live stream of data acquired from the Gleeble. This is important because if the program is aborted, the Gleeble deletes the last 5 seconds of data in the event of an abort, meaning you would not be able to review your useful data after the test is ran. Run the test and monitor the force value on the live graph. Take note of the highest force reached in the test on the monitor. Using this force, go back to line 24 in your program and edit it so that your force is above the force exerted on the graph. A good number to enter is 5 kN above the maximum force that you monitored.

2. The Gleeble runs my test, but when I go back to analyze my data, it appears as if the testing data was cut short and not reading the entire test.

This issue is similar to the problem encountered with the program aborting. When a certain force is exceeded, the Gleeble attempts to abort the program. However, if you are conducting the test at a higher stroke rate (500 mm/sec or sometimes 50 mm/sec), the test will "finish" before the Gleeble can abort the program. When

the Gleeble tries to abort a program, it will delete the last 5 seconds of recorded data from your test even if the test still finished, resulting in the "cut-off data" problem. To solve this problem, follow the same solution as described in <u>Problem</u> <u>1</u> with the Gleeble aborting the program.

3. The vacuum on the Gleeble is pumping down slow or is not achieving the level of vacuum that I need for my test.

This indicates that there is a leak in your vacuum system. There are four likely reasons why this is occurring:

First, open the front door and check both the O-ring and the back of the front door where the O-ring would sit for debris. Debris can cause leaks and prevent a vacuum. To remove debris from the door, take a paper towel with ethanol and wipe down the area where the O-ring would sit on the door to remove all of the debris. If debris is on the O-ring itself, run your finger across the entire length of the Oring. The debris will stick to your finger and allow you to achieve a clean seal. After you wipe down the O-ring, be sure to reapply vacuum grease to the O-ring.

Second, check the O-ring to see if there is sufficient vacuum grease on it. There should be a visible coating across the O-ring's entire length. If there is not, apply a new coat of vacuum grease to the O-ring.

Third, check the clear panels on the front, back of the Gleeble, and ensure there is enough vacuum grease across the O-rings behind these panels. There should be a healthy amount of vacuum grease to prevent outside air from leaking into the Gleeble chamber. If there is not, seek Ed, Antonio Ramirez, or someone else in removing the panel to apply a new layer of grease to these panel O-rings.

Finally, check the inside of the Gleeble chamber for moisture, coolant, or any other liquid. Liquid can keep a vacuum from being formed and must be removed. To do this, take a paper towel soaked in ethanol and wipe down wherever liquid is present in the chamber. You may need to remove/open parts in the machine to fully clean these areas. Seek Ed or Antonio Ramirez for help if you believe you need more access in cleaning the chamber of liquid.

If none of these solutions work, talk with Ed or Antonio and see what they believe your problem could be. You may have to contact DSI for help on their machine.

4. I am getting oxidation on my parts after running a test. What can I do to prevent this?

Oxidation can potentially skew our testing results. If you are getting oxidation on parts there are four likely causes.

First, there may be a small leak in the air hose connecting the Gleeble chamber to the argon tank. This can allow oxygen into the chamber causing oxidation. As of

May 10th, 2018, this is the most likely cause of oxidation issues if you are using the "Tank Fill" control on the Gleeble console. Finding a way to properly rig the argon tank directly to the Gleeble chamber safely and without leaks may vary from one situation or another, so talk to Antonio Ramirez about how to safely do this. If you are already using a method that connects the argon tank to the Gleeble chamber (such as running a hose from the argon tank to the vent valve on the Gleeble), your oxidation issues may be coming from another source.

Second, the samples may have picked up grease on the surface between cleaning and testing, even if the grease may not be immediately visible. To remove this grease, simply run down the sample with ethanol before welding thermocouples on, and then wipe them down with lint-free wipes. The sample should be dry before welding the thermocouples on.

Third, the samples may not be properly cleaned after being spot etched or stripped bare. If you believe this is the cause, rinse the samples with tap water, then spray with deionized water, then spray with ethanol, and then use a blow-dryer to dry the samples and prevent rusting. In the future, make sure you follow proper cleaning procedure following spot etching or stripping.

Finally, there may be a leak in Gleeble chamber itself. To test this, vacuum down the Gleeble to around 5x10[^]-1 torr. Let the Gleeble sit at this vacuum level for a while. The pressure in the Gleeble will likely slowly creep up above this 5x10[^]-1 torr level, which is acceptable. However, if the pressure in the chamber rises at a rapid rate, you likely have a substantial leak in the Gleeble chamber. Seek someone like Antonio Ramirez or Ed for advice on what to do. You may have to contact DSI for assistance.

5. When I plot the Force vs Stroke graphs, I get a weird jump in the data as seen in Figure 36:

This is caused by the Gleeble initiating stoke movement before it has the time to zero the stroke position. This typically happens at a stroke rate of 500 mm/sec due to how fast the samples are pulled at this rate. To fix this problem, go to line 23 (see Figure 37) in the Gleeble program. It should read "delay X msec". This delays the pulling of the sample by X seconds, giving the Gleeble time to zero in the stroke. As of May 10th, 2018, this delay is set at 50 msec, however, this may need to be incrementally adjusted if issues are still being encountered. Older programs may have a different delay time (Figure 37 has a delay of only 5 msec)

The Ohio State University

#	L	Time	Axis 1	Axis 2	Axis 3	1	Comment
1		System	Setup	Limits: Comp	ression=-150m	nm, F	orce=50000kgf, Heat=100%
2	Τ	Stress/Strain	Axial strain usin	g Stroke, I = 12	2.00mm, d = 10	000 m	m
3		Acquire	Force Force.line TC3	PowAngle PT	emp Stroke TO	22	
4		•					
5		•					
6	Γ	•					
7	Τ	Start	Mechanical	🗹 High	Thermal		
8	Т	Mode	Force(kN)	Wedge(cm)	- TC2(C)		
9	Т	Sample	20.0Hz				
10	Т	00:05.0000	1.0		0	25	Light tension to seat jaws/grips
11	T	00:05.0000	0.0		0	25	Return to zero stress
12	Т	00:00.5000	0.0		0	25	Hold to stabilize force
13	Т	Sample	2000.0Hz				
14	Т	00:01.4500	0.0		0	750	*HR 500C/s (test temp -50C)
15	Т	00:00.2000	0.0		0	800	*Prevent overshoot, reduce HR to 250C/s (tes
16	Т	00:00.2000	0.0		0	800	*Hold to stabilize temperature (test temp)
17	Τ	Sample	10000.0Hz				
18	Τ	GSL>	set thermal t	to off			
19	Τ	00:00.0050	0.0		0	25	Extra safeguard for: "set thermal to off"
20	Т	GSL>	delay 5 msec				
21	Т	Zero	Stroke				
22	Т	Mode	Stroke(mm) -	Wedge(cm)	- TC2(C)		
23	Т	GSL>	delay 5 msec	-	7		
24	Т	GSL>	event safeloa	ad if Force	> 8 101		Adjusts delay time to
25	T	GSL>	go stop				allow Gleeble to zero
26	Т	GSL>	end				the stroke position
27	T	00:06.0000	30.00		0	25	
28	T	Sample	10.0Hz				
29	T	00:12.0000	35.00		0	25	Buffer to prevent rapid stopping of jaws
30	T	End	Mechanical	High	Thermal		

Figure 37. Gleeble stroke delay screenshot

6. My program will not start even though I followed the procedure correctly.

This is likely caused by the machine not reading the chamber door as shut (even if it appears to be shut). If this is the case, there will be a yellow circle next to "DoorSaftey" on the Gleeble monitor. To fix this, vent the chamber, open the door, and then shut it again, this time making sure that the circle next to DoorSaftey is green. This indicates that the Gleeble reads the door as shut and should allow you to run the test. You will need to pump down again before you run your test to prevent oxidation.

If this does not fix your problem, contact someone such as Ed or Antonio Ramirez for help as there may be something else wrong with the machine or program.

12. Analysis

- 1. During Testing
 - a. During testing the priority analysis to be conducted is to visually determine how much LME is present. This is done by visually inspecting the sample and determining if deep, shallow, threshold, or no LME is present.
 - i. LME is usually found in higher temperatures and strain rates, then gradually falls off as temperature and strain rate decrease.
 - ii. LME should not be present in the bare samples. If LME is found in a bare sample it likely means that the Zinc layer was not properly removed prior to testing and will need to be rerun.

Figure 38. LME Green Line Data: Material B

- iii. Figure 38 shows visual analysis for Material B. It is color coated to show deep, shallow, threshold, and no LME.
- iv. Examples of LME:
- 1. Deep

Figure 39. Deep LME

- Deep cracks clearly visible to the naked eye
- Brittle surface fracture
- Significant cracking throughout center of the sampe
- 2. Shallow

Figure 40. Shallow LME

- Deep cracks visible the naked eye, less when compared to deep LME
- Illuminated magnifier confirms significant cracks present
- Crack penetration fails to penetrate through entire sample thickness
- 3. Threshold

Figure 41. Threshold LME

- Deep cracks visible through the use of illuminated magnifier
- Cracks concentrated near sample fracture surface
- Cracks do not penetrate through sample thickness
- 4. No LME

Figure 42. No LME

• No cracks present under visual inspection by illuminated magnifier

- b. Samples must be analyzed to determine if oxidation is present. Oxidation will lead to inaccurate force curves due to the weakening of the sample.

i. Example of oxidation:

Figure 43. Oxidation example

- Appears visibly blue in color
- Small amounts of oxidation along fracture surface are acceptable this indicates oxidation occurred post-testing
- 2. Post Testing
 - a. Matlab Processing
 - i. After running the sample on the Gleeble and confirming a good test, place the desired .d0# extension file into a folder to run in Matlab.

📕 🔄 📒 🔻 🛛 Gleeble Tes	st Data					- 0	×
File Home Share	View						~ 📀
$\leftarrow \rightarrow \checkmark \uparrow$ 📕 \rightarrow Jas	kowiak, Joseph A. > Box Sync > A	uto-steel Partnership - LME 2018 > 0	Sleeble Test Dat	a	~ U	Search Gleeble Test Data	a,
🖈 Quick access	Name	Date modified	Туре	Size			^
E Desktop 🖈	BUA475x5-1.d01	5/30/2018 9:41 AM	D01 File	743 KB			
Downloads 💉	BUA475x50-1.d01 Type: D01	10:58 A	D01 File	313 KB			
Documents *	BUA475x500-1.d01 Size: 742	KB 2:18 PM	D01 File	217 KB			
Pictures *	BUA500x5-1.d01 Date mo	dified: 5/30/2018 9:41 AM 9:18 AM	D01 File	751 KB			
6-13 Precentation	BUA500x50-1.d01	5/29/2018 10:33 A	D01 File	322 KB			
6 13 Presentation	BUA500x500-1.d01	5/24/2018 1:55 PM	D01 File	221 KB			
6-13 Presentation	BUA525x5-1.d01	5/30/2018 8:15 AM	D01 File	755 KB			
Auto-steel Partnerst	BUA525x50-1.d01	5/29/2018 10:09 A	D01 File	323 KB			
Procedure	BUA525x500-1.d01	5/24/2018 1:22 PM	D01 File	228 KB			
a Box Sync	BUA550x5-1.d01	5/29/2018 3:03 PM	D01 File	761 KB			
Auto-steel Partnerst	BUA550x50-1.d01	5/29/2018 9:32 AM	D01 File	333 KB			
	BUA550x500-1.d01	5/24/2018 12:58 PM	D01 File	233 KB			
This PC	BUA575x5-1.d01	5/29/2018 2:39 PM	D01 File	767 KB			
E Desktop	BUA575x50-1.d01	5/29/2018 8:53 AM	D01 File	336 KB			
Documents	BUA575x500-1.d01	5/24/2018 12:19 PM	D01 File	242 KB			
Downloads	BUA600x5-1.d01	5/29/2018 2:01 PM	D01 File	772 KB			
Music	BUA600x50-1.d01	5/29/2018 8:12 AM	D01 File	346 KB			
Pictures	BUA600x500-2.d01	5/24/2018 11:53 A	D01 File	246 KB			
Videor	BUA625x5-1.d01	5/29/2018 1:27 PM	D01 File	762 KB			
a Wiedows (C)	BUA625x50-1.d01	5/24/2018 4:24 PM	D01 File	355 KB			
Windows (C.)	BUA625x500-1.d01	5/24/2018 11:01 A	D01 File	254 KB			
🥪 Data (D:)	BUA650x5+1.d01	5/29/2018 1:02 PM	D01 File	784 KB			
Network	BUA650x50-1.d01	5/24/2018 3:59 PM	D01 File	359 KB			
	BUA650x500-2.d01	5/24/2018 10:31 A	D01 File	256 KB			
	BUA675x5-1.d01	5/29/2018 11:57 A	D01 File	790 KB			
	BUA675x50-1.d01	5/24/2018 3:35 PM	D01 File	365 KB			
	BUA675x500-1.d01	5/24/2018 9:51 AM	D01 File	263 KB			
334 items	□ RI14700v5-1 401	5/20/2018 11-20 A	D01 File	796.KR			

Figure 44. Matlab folder for data processing

- ii. It is recommended to use the "Gleeble Test Data" folder on the box sync account and run Matlab from that directory.
- iii. Once all desired files are placed in the folder to be processed in Matlab, open the Matlab application. Ensure the current version of Matlab has the proper functions in your library. Open and run the functions "ASPmultiData_SmoothAvg" and "SmoothAvg" to organize the data in Matlab. <u>NOTE</u>: These functions are setup for Matlab2016 or newer.

Home share	View							
The	PC > Documents > MATLAB					~ U	Search MATLAB	
Quick access	Name	Date modified	Type	Size				
Desktop 🖈	1 ASPgleebleDataAnalysis	5/31/2018 12:24 PM	MATLA8 Code		2 KB			
Downloads x	1 ASPgleebleDataAnalysis_loeTest	6/5/2018 9:31 AM	MATLAE Code		2 KB			
Documents #	ASPgleebleDataAnalysis_SmoothAvgAre	6/5/2018 3:21 PM	MATLAB Code		3 KB			
Pictures #	ASPmultiData	5/31/2018 12:24 PM	MATLAB Code		1 KB			
6-12 Precentation	1 ASPmultiData_loeTest	6/5/2018 9:30 AM	MATLAB Code		1 KB			
6 13 Presentation	ASPmultiData_SmoothAvg	6/5/2018 10:47 AM	MATLAB Code		1 KB			
6-15 Presentation	1 ASPsingleData	6/4/2018 8:31 AM	MATLAB Code		3 KB			
Auto-steel Partnersh	ASPsingleData_JoeTest	6/4/2018 8:48 AM	MATLA8 Code		3 KB			
Procedure	smooth	6/5/2018 12:54 PM	MATLAB Code		1 KB			
Bax Sync	1 SmoothAvg	6/5/2018 12:31 PM	MATLAB Code		1 KB			
Auto-steel Partnerst								
This PC								
Desktop								
Documents								
Downloads								
h Music								
Pictures								
Videos								
Windows (C:)								
Data (D:)								
020720								
Network								

Figure 45. Matlab function folder

iv. Change the Matlab directory path to the desired folder to execute the Matlab script.

AMATLAB R2018a - academic use		- a ×
HOME PLOTS APPS		🕒 🔁 🕐 🔻 Search Documentation 🛛 🔎 Log In
New New Open Compare Import St Script Live Script	Construction C	
And A Carlos A Carlos A interview Carlos	VANABLE CODE DATEMAN ENVIRONMENT RESOURCES	- 0
Current Folder	IL * Autorsteerraintestip - Dat 2016 * Gleeble test Data	Workmare
Current rolder	Command whitedow	workspace
BLA4755-51-601 BLA4755-50-1601 BLA4755-50-1601 BLA4755-50-1601 BLA4755-50-1601 BLA525-51-601 BLA525-50-1601 BLA525-50-1601 BLA525-50-1601 BLA525-50-1601 BLA605-50-1601 BLA655-50-1601 BLA655-50-1601 BLA655-50-1601 BLA655-50-1601 BLA655-50-1601 BLA655-50-1601 BLA655-50-1601 BLA655-50-1601 BLA65550-1601 B	<pre>Y Y Y</pre>	Name - Yaue
Select a file to view details		
Ready		
Search the web and Windows	0 🤮 🛤 🔊 🥠	へ 💼 🦟 印) 🗊 219 PM 6/26/2018

Figure 46. Matlab workbook directory path and function call

v. Copy results of Matlab function to an excel workbook.

Normal Normal<	HOME PLOTS APPS											(1.1) T	A PLACE	(2) -	earch Documentation	
Inst Unitation Unitation Unitation Unitation Unitation Unitation Iff close - C + Uses + jackwells + Sockyer - Acceler Nameral- Mark Colecter Hambergis- UK.2019 Colecter Hambergis-UK.2019 Colecter Hambergis-UK.2019 Colecter Hambergis-UK.2019	New New Open Compare Dat	ot Save a Workspe	Ke Z Ca	eer Variable een Variable 👻 ear Workspace 👻	Favorites	Analyze Code	Senulink	🔲 🎯 Prataren Layout 🔄 Set Pat	ices 🍰 Add-Ons	C Help	Community					
Bill Control Auto-bask Pattership-Luk 2018 F Global Tell Dial Bill Control Market- Name- Sector Pattership-Luk 2018 F Global Statut Market- Bill Control Market- Market- Bill Contr	ALE		VARIABLE			0006	OMAILINK	ENVPONV	787		RESÓURCES					_
men e mar e	🕨 🔃 📴 🔋 • C: • Users • jaskowiak.5 •	Box Sync	Auto-ste	el Partnership - L	ME 2018 +	Gleeble Test Data							_	-		
Name - Name - Name - Value Buck/Hoi Lot * </td <td>ent Folder</td> <td>۲</td> <td>Command</td> <td>Window</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td>Workspace</td> <td></td> <td></td>	ent Folder	۲	Command	Window									C	Workspace		
a MAH555-1001 BAH556-1001 BAH566-1001 BA	Name *		New to M	ATLAB? See reso	urces for G	etting Started.							>	Name +	Value	
Buckfisch-1dh Buckfi	BUA475x5-1.d01	^	>> 81	SPmultiData	SmoothA	va.							^	10000		
BAAFJSCO-1401 BAXADS-1401 BAX	BUA475x50-1.d01		Tost	Date	Sample	name Wateria	1 667	metry Sur	are.	Promis	am Terro Doal	Temp	Strain			
BAXABASA 1-001 BAXABASA 1-00	BUA475x500-1.d01		N/B							475 10			5. 1			
B RAADOLO Lot 1 B RAAD	BUA500x5-1.d01			20 10 201		45 898475-50							-			
BetAddock-1am Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	BUA500x50-1.d01		ar a										30			
B AX3556-1.001 B AX3566-1.001 B AX3666-1.001 B AX3666-1.001	BUA500x500-1.d01		100 A			30 0004473X300							500			
BAX3500-1001 V/A 2 + May 2018 01011222 MAX50000-1.001 A 10112000 MAX50000-1.001 A 10112000 MAX50000-1.001 A 10112000 MAX500000-1.001 MAX500000-1.001 A 10112000 MAX500000-1.001 MAX500000-1.001 A 10112000 MAX500000-1.001 MAX500000-1.001 MAX500000-1.001 A 10112000 MAX500000-1.001 A 101120000 MAX500000-1.001 A 101120000 MAX500000-1.001 A 101120000 MAX500000-1.001 A 1011200000 MAX500000-1.001 A 10112000000 MAX5000000-1.001 A 1011200000	BUA525x5-1.d01		207 A							ous de			a a .			
LAX3550-101 DAX3500	BUA525x50-1.d01		S/A										50			
BAX566-1.001 A BAX566-1.001 BAX566-1.001 A BAX566-1.001 BAX566-1.001 A BAX566-1.001 BAX5666-1.001 A BBX566-1.001 BAX566-1.001 BAX5666-1.001 A BBX566-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX6666-1.001 BAX66666-1.001 A BAX66666-1.001	BUA525x500-1.d01		87A	24-May-2018									500			
BLASSAD-Loff V/A 24-May-2018 312-32 0.00 (0.10) BUXSSAD-1.401 A 0.01 form Barrs 52.5 deg 5.3 .8.6 deg 5.0 5.0 BLASSAD-Loff V/A 24-May-2018 312-30 BUXSSAD-Loff Barrs 5.5 deg 5.3 .8.6 deg 5.0 5.0 BLASSAD-Loff V/A 24-May-2018 312-32 BUXSSAD-Loff BUXSSAD-2.0 BUXSSAD-2.0 BUXSSAD-2.0 BUXSSAD-2.0 BUXSSAD-2.0 BUXSSAD-2.0 BUXSSAD-2.0 BUXSSAD-2.0 Loff form Bure 5.0 deg 5.3 .4 deg 5.0 D BUXADD-2.001 V/A 24-May-2018 223-31.2 BUXSSAD-2.0 Loff form Bure 5.0 deg 5.3 deg 5.3 D	BUA550x5-1.d01		N/A										5 1			
BAX5060-1001 V/A 24-sey_2010 BDX2155-1001 A 01ferm Baxe 521 deg 541.08 deg 50 50 BAX505-1001 V/A 24-sey_2018 BDX2155-1001 <	BUA550x50-1.d01		N/A										50			
BA3/55:14:01 V/A 20-Mey-2018 15:00:04 BUX/50:05-1,001 No.16 rm Norm Sold egr 5.50 degr 5.50 degr 5.50 degr 5.50 degr 5.51 degr 5.50 degr 5.51 degr	_] BUA550x500-1.d01		N/A										500			
LMAX500-1.001 V/A 2±4wg-2018 (0.9.2.2.2.3) BMAX500-0.1.001 A Differem Bare 50.0 deg 5.73, 90 deg 5.9 0 DAMODOL 1.001 V/A 2±4wg-2018 (0.9.2.2.2.3) BMAX500-0.1.001 A Differem Bare 50.0 deg 5.73, 90 deg 5.9 0 DAMODOL 1.001 V/A 2±4wg-2018 (0.9.2.2.3) BMAX500-0.1.001 Multicem Bare 575 deg 5.81, 07 deg 5.91 DAMODOL 1.001 V/A 2±4wg-2018 (0.1.2.3.4) BMAX500-0.1.001 A Differem Bare 575 deg 5.81, 07 deg 5.90 DAMODOL 2.001 V/A 2±4wg-2018 (0.1.2.3.4) BMAX500-0.1.001 A Differem Bare 575 deg 5.81, 07 deg 5.90 DAMADOL 2.001 V/A 2±4wg-2018 (0.1.2.3.5) BMAX500-1.001 A Differem Bare 570 deg 5.81, 07 deg 5.90 DAMADOL 2.001 V/A 2±4wg-2018 (0.1.2.3.5) BMAX60050-1.401 A Differem Bare 650 deg 61.1.2 deg 5.90 DAMADOL 2.001 V/A 2±4wg-2018 (0.1.2.3.5) BMAX6050-1.401 A <td>_ BUA575x5-1.d01</td> <td></td> <td>37/A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5 1</td> <td></td> <td></td> <td></td>	_ BUA575x5-1.d01		37/A										5 1			
LANDSON LOPI V/A 24-bay-2018 12:13:13 BAXSD0.50-1.d01 A DD1form Baxe 50.deg C 50.14 deg C 50. LANDSON LOPI V/A 24-bay-2018 12:13:13 BAXSD0.50-1.d01 A DD1form Baxe 50.deg C 50.14 deg C 50. LANDSON LOPI V/A 24-bay-2018 BAXSD0.50-1.d01 A DD1form Baxe 50.deg C 50.14 deg C 50. LANDSON LOPI V/A 24-bay-2018 BAXSD0.50-1.d01 A DD1form Baxe 50.deg C 50.14 deg C 50. LANDSON LOPI V/A 24-bay-2018 BAXSD0.50-1.d01 A DD1form Baxe 60.deg C 61.14 deg C 50. LANDSON LOPI V/A 24-bay-2018 BAX60560-1.d01 A DD1form Baxe 60.deg C 61.14 deg C 50. LANDSON LOPI V/A 24-bay-2018 BAX60560-2.d01 A BAX60560-2.d01 Baxe 60.deg C 61.14	BUA575x50-1.d01		N/A										50			
L MAGOL 1-01 L	BUA575x500-1.d01		N/A										500			
Lindbooks date V/A 23 - Mary 2018 0.00000000000000000000000000000000000	BUA600x5-1.d01		S/A										8 8			
LMADGOS-2.031 MACKSM-1.001 A/A 24-bary-2184 21:55104 MIX139505-1.001 A Indicam Sete 373.dep C 551.07.dep C 501 MAXSM-1.001 A MIX139505-1.001 A Indicam Sete 373.dep C 511.07.dep C 501 MAXSM-5001 MIX139505-1.001 MIX139505-1.001 A Indicam Sete 573.dep C 511.07.dep C 501 MAXSM-5010 MIX139505-1.001 MIX109505-1.001 A Indicam Sete 500.dep C 611.07.dep C 501 MAXSM-5010 V/A 22-berg-2018 110.121.55 MIX109505-1.001 A Unificam Sete 453.dep C 611.07.dep C 501 MAXSM-5010 V/A 22-berg-2018 110.121.55 MIX109505-1.001 A Unificam Sete 453.dep C 611.07.dep C 501 MAXSM-5010 V/A 22-berg-2018 110.11.46 MIX115505-1.001 A Unificam Sete 453.dep C 611.02 dep C 501 V/A 22-berg-2018 110.11.44 MIX115505-1.001 A Unificam<	BUA600x50-1.d01		5/2										50			
Law253-51-001 →	BUA600x500-2.d01												500			
E BAASSAS ADD 1 E BAASSAS ADD 1 BAASSAS ADD 1 BAASSASASAS ADD 1 BAASSASASAS ADD 1 BAASSAS ADD 1 BAASSASA	J BUA625x5-1.d01					04 0000708000							301			
LawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 apri DawAdStock-1 april DawAdStock-1 april A buildram Barra 400 deg C 48.1,2 deg C 50 UA 2 + hery-2018 13127101 BBACK356-1,401 A buildram Barra 425 deg C 48.1,5 deg C 51 UA 2 + hery-2018 110144 BBACK3560-1,401 A buildram Barra 425 deg C 48.1,5 deg C 51 UA 2 + hery-2018 1515744 BBACK3560-1,401 A buildram Barra 425 deg C 48.1,5 deg C 51 UA 2 + hery-2018 1515744 BBACK3560-1,401 A buildram Barra 455 deg C 48.1,5 deg C 51 UA 2 + hery-2018 1515744 BBACK3560-1,401 A buildram Barra 455 deg C 48.1,5 deg C 51 UA 2 + hery-2018 1515744 BBACK3560-1,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515742 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515742 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 1515722 BBACK3562-2,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 0+51144 BBACK3560-1,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 0+51144 BBACK3560-1,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 0+51144 BBACK3560-1,401 A buildram Barra 455 deg C 48.1,6 deg C 51 UA 2 + hery-2018 0+51144 BBACK3560-1,401 A buildram Barra 455 deg C 48.4,5 deg C 51 UA 2 + hery-2018 0+51144 BBACK3560-1,401 A buildram Barra 455 deg C 48.4,5 deg C 51 UA 2 + hery-2018 0+51144 BBACK3560-1,401 A buildram Barra 455 deg C 48.4,5 deg C 50 UA 2 +	BUA625x50-1.d01		NO R													
Bab3dbc/1d01 Div 24 49kg/2018 11:55:54 Bib3dbc/1d01 A 10 from Bare 400 deg C 614.71 deg C 500 Bab3dbc/1d01 Div 24 49kg/2018 11:55:54 Bib3dbc/1d01	BUA625x500-1.d01		S/A										50			
LBAASGOO-Loof V/A 2+ May-2018 13:27:101 BBACSGOO-Loof CS deg C CS deg C S.64.47:2 deg C 5 BAASGOO-Loof V/A 2+ May-2018 13:27:101 BBACSGOO-Loof Bars CS deg C CS deg C S.64.47:2 deg C 5 BAASGOO-Loof V/A 2+ May-2018 10:10:144 BBACSGOO-Loof A DhLform Bars CS deg C CS deg C 5 D Select a file to view details V/A 2+ May-2018 10:10:144 BBACSGOO-Loof A DhLform Bars CS deg C CS A.44 gc C 5 Select a file to view details V/A 2+ May-2018 10:15:15:44 BBACSGOO-Loof A DhLform Bars CS deg C CS A.44 gc C 5 1 V/A 2+ May-2018 10:15:12:15:15:14:8 BBACSGOO-Loof A DhLform Bars CS deg C CS A.44 deg C 5 1 V/A 2+ May-2018 10:15:12:8 BBACSGOO-Loof 11:40:1 MLform Bars CS deg C CS A44 A CS A44 CS A44 CS A44 C< S	BUA650x5-1.d01		N/A										500			
Laukadoxa2.com V/A 24-bacy-2018 16:24:256 BUAK2353:0-1.401 A Difform Bare 623. deg C = 3384 deg C = 50. Main V/A 24-bacy-2018 10:10:21 BUAK2353:0-1.401 A Difform Bare 623. deg C = 3384 deg C = 50. V/A 22-bacy-2018 10:21:21 BUAK2353:0-1.401 A Difform Bare 623. deg C = 3384 deg C = 50. V/A 22-bacy-2018 10:21:21 BUAK3056-1.401 A Difform Bare 650 deg C = 6435 deg C = 50. Select a file to view details U/A 22-bacy-2018 10:21:21 BUAK3056-1.401 A Difform Bare 650 deg C = 6445 deg C = 50. V/A 22-bacy-2018 10:21:21 BUAK3056-1.401 A Difform Bare 673 deg C = 6445 deg C = 50. V/A 22-bacy-2018 10:21:21 BUAK31350-1.401 A Difform Bare 673 deg C = 6445 deg C = 50. V/A 22-bacy-2018 10:21:21:4 BUAK51350-1.401 A </td <td>BUA650x50-1.d01</td> <td></td> <td>N/N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5 1</td> <td></td> <td></td> <td></td>	BUA650x50-1.d01		N/N										5 1			
ani V/A 24-bary-2010 110:14:4 BURK235300-1.001 A Difform Bars 625 649 C 97.72 409 C 50 V/A 24-bary-2010 110:14:4 BURK235300-1.001 A Difform Bars 625 649 C 87.72 409 C 50 V/A 24-bary-2010 515:5544 BURK50540-1.401 A Difform Bars 650 669 C 65.45 609 C 50 V/A 24-bary-2018 515:5544 BURK50500-1.401 A Difform Bars 650 609 C 65.45 609 C 50 V/A 24-bary-2018 10:37:13 BURK5050-1.401 A Difform Bars 675 609 C 5.1 V/A 24-bary-2018 10:37:12 BURK5150-1.401 A Difform Bars 675 69 C 5.1 V/A 24-bary-2018 10:47:14:40 MuRC1abab <td>J BUA650x500-2.d01</td> <td>~</td> <td>N/R</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td></td>	J BUA650x500-2.d01	~	N/R										50			
Select a file to view defails V/A 22-Hexy-2018 13/20217 BURKS005-1.dD1 A Dailform Bara 650 deg C 641.305 deg C 51.4 V/A 22-Hexy-2018 13/20217 BURKS005-1.dD1 A Dailform Bara 650 deg C 641.305 deg C 651.45 deg C 50.15 deg C 650.45 deg C 50.15 deg C 651.45 deg C 650.45 deg C 50.15 deg C 651.45 deg C 650.45 deg C 50.15 deg C 650.10 deg C 650.15 deg	ails	× .	S/A										500			
Setect # file to view details V/A 24 + May - 2010 10.539.44 BURK 500.500-1.4011 A Diff form Bare 650 deg C 643.45 Meg C 50 Setect # file to view details V/A 24 + May - 2010 10.151.11 BURK 500.500-2.4011 A Diff form Bare 650 deg C 643.45 Meg C 50 V/A 24 + May - 2010 10.151.12 BURK 500.500-2.4011 A Diff form Bare 650 deg C 643.45 Meg C 50 V/A 24 + May - 2010 10.151.12 BURK 500.500-2.4011 A Diff form Bare 650 deg C 643.45 Meg C 50 V/A 24 + May - 2010 10.511.22 BURK 500.500-2.4011 A Diff form Bare 650 deg C 643.45 Meg C 50 V/A 24 + May - 2010 10.511.24 BURK 510.500-1.4011 A Diff form Bare 670 deg C 643.15 Meg C 50 V/A 24 + May - 2010 10.511.24 BURK 510.500-1.4011 A Diff form Bare 70 deg C 643.15 Meg C 50			N/A										5 1			
Select a file to view defails v/A 24-heavy-2018 10-31-24 mmA4502-60-2-d01 A Thi farm 650 deg C 674.23 deg C 501 Select a file to view defails v/A 24-heavy-2018 10-31-24 mmA4502-60-2-d01 A Thi farm Bare 675 deg C 674.23 deg C 5<1			N/A										50			
Select a file to view details v/A 2.9 -Mary-2018 21:57-12 BUIK 0558.5-1.d01 A Unif form Bare 675 deg C 9.0			N/A										500			
Select a file to view details v/A = 2.4-may-2018 52:53:24 BERAF53550-1.401 A UNLFORM Bare 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM Bare 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM Bare 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM Bare 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM Bare 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM Bare 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 50:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 10:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 10:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 10:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 10:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 10:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.13 deg C 50.1 A (NLFC) = 2.4-may-2018 10:51:44 BERAF53500-1.401 A UNLFORM BARE 073 deg C 693.15 d			s/a										5 1			
A 24 May 2018 09:51:44 B00(573550-1:401 A Uniform Bare 675 deg C 457.546 C 5 0 A 24. 25. May 2018 11:53:54 B00(673550-1:401 A Uniform Bare 75 deg C 457.546 C 5 1 A 25. August 2018 11:53:54 B00(673550-1:401 A Uniform Bare 75 deg C 457.546 C 5 1)	Select a file to view details												50			
			100	24-May 201		44 804675-50		A Daiform	Barro		15 den (* 100		502			
			fx	20 May 201		EA DITATIONE 1										
			<			28. (S. (S. (S. (S. (S. (S. (S. (S. (S. (S	- A-					-	>			
							_									

- b. Quantitative Analysis in Excel
 - i. Open the Excel file "Matlab Test Results ## ## ####" with most current date.

5	• d - +					Matlab Test	Results - Updated June (ith - Excel				8	-	a x
File	Home Insert Page													A Share
Paste	Cut Copy - Calibri Cormat Painter B J U	- 11 - A A - 11 - O - A -			ap Text rge & Center 🔹	General • \$ • % • 🐩 🖧	Conditional Format a	Normal Neutral	Bad	Good Check Cell	Insert Delete Format	∑ AutoSum ↓ Fill * Ø Clear *	Sort & Fin	C d &
Cleb	eard 1	Fort II		Alignment	- -	Number 5	Formatting * Table *		Styles		Cells		Filter* Sex	α.
No	• 1 A V	Jx												~
A In	В	C	D	E	F	G	н	1	3	L L	MN	0	P 1	Q -
1 Test	Date	 Samplename 	 Material 	 Geometry 	* Surface	🝷 Program Temp 💌	Peak Temp 💌 Stra	iin Rate 💌 II	eration 💌 Max Fo	orce 💌 Half Stroke 💌	Energy 💌			
2 N/A	05-Jun-201809:11:40	BUA475x5-1.d01	A	Uniform	Bare	475	494.32	5	1	10.55 6.18	61.27			_
3 N/A	05-Jun-201809:11:40	BUA475x50-1.d01	A	Uniform	Bare	475	490.43	50	1	11.93 7.13	79.53			
4 N/A	05-Jun-201809:11:40	BUA475x500-1.d01	A	Uniform	Bare	475	492.78	500	1	12.27 6.51	71.82			
5 N/A	05-Jun-201809:11:40	BUA500x5-1.d01	A	Uniform	Bare	500	516.33	5	1	9.8 5.4	50.53			
6 N/A	05-Jun-201809:11:41	BUA500x50-1.d01	A	Uniform	Bare	500	512.9	50	1	11.1 7.43	77.56			
7 N/A	05-Jun-201809:11:41	BUAS00x500-1.d01	A	Uniform	Bare	500	511.85	500	1	12.33 6.24	69			
8 N/A	05-Jun-201809:11:41	BUA525x5-1.d01	A	Uniform	Bare	525	539.01	5	1	9.34 6.13	53.71			
9 N/A	05-Jun-201809:11:41	BUA525x50-1.d01	A	Uniform	Bare	525	538.56	50	1	10.37 7.38	71.1			
10 N/A	05-Jun-201809:11:41	BUA525x500-1.d01	A	Uniform	Bare	525	542.08	500	1	11.78 6.91	73.3			
11 N/A	05-Jun-201809:11:41	BUA550x5-1.d01	A	Uniform	Bare	550	562.46	5	1	8.55 6.05	49.32			
12 N/A	05-Jun-201809:11:41	BUA550x50-1.d01	A	Uniform	Bare	550	579.98	50	1	9.34 7.65	65.93			
13 N/A	05-Jun-201809:11:41	BUA550x500-1.d01	A	Uniform	Bare	550	561.44	500	1	11.67 6.88	72.52			
14 N/A	05-Jun-201809:11:41	BUA575x5-1.d01	A	Uniform	Bare	575	588.85	5	1	7.7 6.25	45.8			
15 N/A	05-Jun-201809:11:41	BUAS75x50-1.d01	A	Uniform	Bare	575	591.87	50	1	9 7.18	60.85			
16 N/A	05-Jun-201809:11:41	BUA575x500-1.d01	A	Uniform	Bare	575	585.07	500	1	11.07 7.25	73.12			
17 N/A	05-Jun-201809:11:41	BUA600x5-1.d01	A	Uniform	Bare	600	612.28	5	1	7.08 6.36	42.99			
18 N/A	05-Jun-201809:11:41	BUA600x50-1.d01	A	Uniform	Bare	600	611.72	50	1	8.16 7.29	55.63			
19 N/A	05-Jun-201809:11:41	BUA600x500-2.d01	A	Uniform	Bare	600	616.51	500	2	10.4 7.37	69.53			
20 N/A	05-Jun-201809:11:41	BUA625x5-1.d01	A	Uniform	Bare	625	636.27	5	1	6.43 6.32	38.81			
21 N/A	05-Jun-201809:11:41	BUA625x50-1.d01	A	Uniform	Bare	625	635.94	50	1	7.59 7.53	52.77			
22 N/A	05-Jun-201809:11:41	BUA625x500-1.d01	A	Uniform	Bare	625	637.72	500	1	9.24 6.45	54.62			
23 N/A	05-Jun-201809:11:41	BUA650x5-1.d01	A	Uniform	Bare	650	663.05	5	1	5.98 6.48	37.05			
24 N/A	05-Jun-201809:11:41	BUA650x50-1.d01	A	Uniform	Bare	650	665.45	50	1	6.52 7.89	47.52			
25 N/A	05-Jun-201809:11:41	BUA650x500-2.d01	A	Uniform	Bare	650	676.29	500	2	8.8 7.86	63.05			
26 N/A	05-Jun-201809:11:41	BUA675x5-1.d01	A	Uniform	Bare	675	684.49	5	1	5.37 6.51	33.2			
27 N/A	05-Jun-201809:11:41	BUA6/5x50-1.d01	A	Uniform	Bare	675	690.1	50	1	5.87 8.34	44.32			
28 N/A	05-Jun-201809:11:41	BUA675x500-1.d01	A	Uniform	Bare	675	692.53	500	1	7.99 8.47	60.39			
29 N/A	US-Jun-201809:11:41	BUA700x5-1.d01	A	Unitorm	Bare	700	712.95	5	1	4.41 6.79	28.32			
AVN DE	Raw Data Comb	ined Graphs Mate	rial A M	laterial B Ma	Herial C Ma	aterial F Material C	Material H D	elta (4)	10[4]	5.75 8.05	41.93			1
Rearly								0			10	m m		+ 100%
	_	_	-			1-9421							-	240.01
S	earch the web and Wir	idows		02	w]	×II						~ =	· (10) 同	6/26/2018

ii. Paste Matlab data into the table on sheet titled "Raw Data".

Figure 48. Excel workbook "Raw Data" screenshot

- iii. Excel will populate all data for deltas and quantitative LME analysis in respective material sheets.
- iv. Each material sheet has LME characterization based off of a comparison between the base sample and coated sample. Parameters to quantitatively determine LME are based off of qualitative analysis.
- v. LME Calculation:

 $\frac{(Coated Value - Bare Value)}{} * 100\% = Percent Change of Delta$

- vi. LME Characterization:
 - 1. Deep LME: Delta $\leq -25\%$
 - 2. Shallow LME: $-25\% \leq Delta \leq -15\%$
 - 3. Threshold LME: $-15\% \leq Delta \leq -7.5\%$
 - 4. No LME: $-7.5\% \leq Delta$